cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A185130 Irregular triangle E(n,g) counting not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly g.

Original entry on oeis.org

1, 1, 1, 4, 2, 15, 5, 1, 71, 21, 2, 428, 103, 8, 1, 3406, 752, 48, 1, 34270, 7385, 450, 5, 418621, 91939, 5752, 32, 5937051, 1345933, 90555, 385, 94782437, 22170664, 1612917, 7573, 1, 1670327647, 401399440, 31297424, 181224, 3, 32090011476, 7887389438
Offset: 2

Views

Author

Jason Kimberley, Dec 26 2012

Keywords

Comments

The first column is for girth exactly 3. The column for girth exactly g begins when 2n reaches A000066(g).

Examples

			1;
1, 1;
4, 2;
15, 5, 1;
71, 21, 2;
428, 103, 8, 1;
3406, 752, 48, 1;
34270, 7385, 450, 5;
418621, 91939, 5752, 32;
5937051, 1345933, 90555, 385;
94782437, 22170664, 1612917, 7573, 1;
1670327647, 401399440, 31297424, 181224, 3;
32090011476, 7887389438, 652159986, 4624481, 21;
666351752261, 166897766824, 14499787794, 122089999, 545, 1;
14859579573845, 3781593764772, 342646826428, 3328899592, 30368, 0;
		

Crossrefs

Initial columns of this triangle: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Formula

The n-th row is the sequence of differences of the n-th row of A185330:
E(n,g) = A185330(n,g) - A185330(n,g+1), once we have appended 0 to each row of A185330.
Hence the sum of the n-th row is A185330(n,3) = A005638(n).

A185336 Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth at least 6.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 1, 5, 32, 385, 7574, 181227, 4624502, 122090545, 3328929960, 93990692632, 2754222605808
Offset: 0

Views

Author

Jason Kimberley, Jan 28 2012

Keywords

Comments

The null graph on 0 vertices is vacuously 3-regular; since it is acyclic, it has infinite girth.

Crossrefs

3-regular simple graphs with girth at least 6: A014374 (connected), A185236 (disconnected), this sequence (not necessarily connected).
Not necessarily connected k-regular simple graphs with girth at least 6: A185326 (k=2), this sequence (k=3).
Not necessarily connected 3-regular simple graphs with girth *at least* g: A005638 (g=3), A185334 (g=4), A185335 (g=5), this sequence (g=6).
Not necessarily connected 3-regular simple graphs with girth *exactly* g: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Programs

  • Mathematica
    A014374 = Cases[Import["https://oeis.org/A014374/b014374.txt", "Table"], {, }][[All, 2]];
    etr[f_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d f[d], {d, Divisors[j]}] b[n - j], {j, 1, n}]/n]; b];
    a = etr[A014374[[# + 1]]&];
    a /@ Range[0, Length[A014374] - 1] (* Jean-François Alcover, Dec 04 2019 *)

Formula

Euler transformation of A014374.

Extensions

a(18) from A014374 from Jean-François Alcover, Dec 04 2019
Previous Showing 11-12 of 12 results.