cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A240722 Expansion of log'((-1-sqrt(1-8*x)+sqrt(2+2*sqrt(1-8*x)+8*x))/(4*x)).

Original entry on oeis.org

1, 7, 46, 323, 2326, 17062, 126764, 950819, 7184422, 54604082, 416990564, 3197008718, 24592858876, 189719297068, 1467180979096, 11370769197347, 88291427756294, 686715981892666, 5349188181210548, 41723881423351898, 325845079538136596
Offset: 0

Views

Author

Vladimir Kruchinin, Apr 11 2014

Keywords

Crossrefs

Cf. A186997.

Programs

  • Magma
    [(n+1)*(&+[Binomial(k+1,n-k)*Binomial(n+2*k+2, n+k+1)/(n+k+2): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Sep 30 2018
  • Mathematica
    CoefficientList[Series[(1/(16*x*(1 + x)*(-1 + 8*x)))*(8 - Sqrt[2]*Sqrt[1 + Sqrt[1 - 8*x] + 4*x] - 3*Sqrt[2 - 16*x]*Sqrt[1 + Sqrt[1 - 8*x] + 4*x] + 8*x*(-7 - 8*x + Sqrt[2]*Sqrt[1 + Sqrt[1 - 8*x] + 4*x])), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 12 2014 *)
  • Maxima
    a(n):=(n+1)*sum((binomial(k+1,n-k)*binomial(n+2*k+2,n+k+1))/(n+k+2),k,0,n);
    
  • PARI
    for(n=0, 30, print1((n+1)*sum(k=0, n, (binomial(k+1, n-k)*binomial(n +2*k +2, n+k+1))/(n+k+2)), ", ")) \\ G. C. Greubel, Sep 30 2018
    

Formula

a(n) = (n+1)*Sum_{k=0..n} (binomial(k+1, n-k) * binomial(n+2*k+2, n+k+1) / (n+k+2)).
A(x) = B'(x)/B(x) where B(x) = (-1-sqrt(1-8*x) + sqrt(2+2*sqrt(1-8*x)+8*x)) / (4*x) is the g.f. of A186997.
a(n) ~ 2^(3*n+2)/sqrt(3*Pi*n). - Vaclav Kotesovec, Apr 12 2014
Conjecture: -(3*n-1)*(2*n+1)*(n+1)*a(n) +2*(21*n^3+14*n^2-2*n-1)*a(n-1) +8*n*(3*n+2)*(2*n-1)*a(n-2)=0. - R. J. Mathar, Jun 14 2016
From Peter Bala, Jul 27 2024: (Start)
The following remarks assume an offset of 1.
a(n) = [x^n] c(x + x^2)^n, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
It follows that the Gauss congruences hold: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r.
Calculation suggests that the stronger supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) hold for all primes p >= 3. (End)

A243034 Expansion of A(x) = x*F'(x)/(F(x) - F(x)^2), where F(x) = (-1 - sqrt(1-8*x) + sqrt(2 + 2*sqrt(1-8*x) + 8*x))/4.

Original entry on oeis.org

1, 2, 10, 62, 422, 2992, 21736, 160442, 1197798, 9018656, 68355820, 520851212, 3986036204, 30615867128, 235879185188, 1822138940482, 14108173076358, 109454660444336, 850687921793836, 6622072711690452, 51621868156476212, 402929115540626240, 3148664886787313728
Offset: 0

Views

Author

Vladimir Kruchinin, May 29 2014

Keywords

Crossrefs

Cf. A186997.

Programs

  • Mathematica
    Table[1+n*Sum[Sum[Binomial[k, n-m-k]*Binomial[n+2*k-1, n+k-1]/(n+k), {k, 1, n-m}], {m, 0, n}],{n,0,20}] (* Vaclav Kotesovec, May 31 2014 after Vladimir Kruchinin *)
  • Maxima
    a(n):=1+n*sum(sum((binomial(k,n-m-k)*binomial(n+2*k-1,n+k-1))/(n+k),k,1,n-m),m,0,n);
    
  • PARI
    for(n=0,25, print1(1 + n*sum(m=0,n, sum(k=1,n-m, (binomial(k,n-m-k)*binomial(n+2*k-1,n+k-1))/(n+k))), ", ")) \\ G. C. Greubel, Jun 01 2017

Formula

a(n) = 1 + n*Sum_{m=0..n} Sum_{k=1..(n-m)} binomial(k, n-m-k) * binomial(n+2*k-1, n+k-1) / (n+k).
G.f.: A(x) = x*F'(x)/(F(x)-F(x)^2), where F(x)/x is g.f. of A186997.
a(n) ~ (3+5*sqrt(3)) * 8^n / (33*sqrt(Pi*n)). - Vaclav Kotesovec, May 31 2014

A243163 Triangle read by rows: T(n,k) = binomial(k,n-k)*binomial(n+2*k,n+k) /(n+k+1), n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 0, 7, 12, 0, 0, 4, 45, 55, 0, 0, 0, 55, 286, 273, 0, 0, 0, 22, 546, 1820, 1428, 0, 0, 0, 0, 455, 4760, 11628, 7752, 0, 0, 0, 0, 140, 6120, 38760, 74613, 43263, 0, 0, 0, 0, 0, 3876, 67830, 302841, 480700, 246675, 0, 0, 0, 0, 0, 969, 65835
Offset: 0

Views

Author

Peter Luschny, May 31 2014

Keywords

Examples

			                               1;
                              0, 1;
                            0, 1, 3;
                          0, 0, 7, 12;
                        0, 0, 4, 45, 55;
                     0, 0, 0, 55, 286, 273;
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> binomial(k,n-k)*binomial(n+2*k,n+k)/(n+k+1);
    seq(print(seq(T(n,k), k=0..n)), n=0..10);

Formula

T(n, n) = A001764(n).
T(2*n,n) = A002293(n).
Sum_{k=0..n} T(n, k) = A186997(n).
Previous Showing 11-13 of 13 results.