cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A191034 Primes p with Jacobi symbol (p|51) = 1.

Original entry on oeis.org

5, 11, 13, 19, 23, 29, 41, 43, 67, 71, 103, 107, 113, 127, 131, 151, 157, 167, 173, 197, 223, 227, 229, 233, 269, 271, 307, 311, 317, 331, 347, 349, 373, 401, 409, 419, 421, 431, 433, 449, 457, 463, 479, 503, 521, 523, 577, 613, 617, 631, 641, 653, 661, 677
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 51)", which is subsequence A106904. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(677) | JacobiSymbol(p, 51) eq 1]; // Vincenzo Librandi, Sep 10 2012
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,51]==1&]

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A341786 Norms of prime ideals in Z[(1+sqrt(-15))/2], the ring of integers of Q(sqrt(-15)).

Original entry on oeis.org

2, 3, 5, 17, 19, 23, 31, 47, 49, 53, 61, 79, 83, 107, 109, 113, 121, 137, 139, 151, 167, 169, 173, 181, 197, 199, 211, 227, 229, 233, 241, 257, 263, 271, 293, 317, 331, 347, 349, 353, 379, 383, 409, 421, 439, 443, 467, 499, 503, 541, 557, 563, 571, 587
Offset: 1

Views

Author

Jianing Song, Feb 19 2021

Keywords

Comments

The norm of a nonzero ideal I in a ring R is defined as the size of the quotient ring R/I.
Note that Z[(1+sqrt(-15))/2] has class number 2.
Consists of the primes congruent to 1, 2, 3, 4, 5, 8 modulo 15 and the squares of primes congruent to 7, 11, 13, 14 modulo 15.
For primes p == 1, 4 (mod 15), there are two distinct ideals with norm p in Z[(1+sqrt(-15))/2], namely (x + y*(1+sqrt(-15))/2) and (x + y*(1-sqrt(-15))/2), where (x,y) is a solution to x^2 + x*y + 4*y^2 = p; for p == 2, 8 (mod 15), there are also two distinct ideals with norm p, namely (p, x + y*(1+sqrt(-15))/2) and (p, x + y*(1-sqrt(-15))/2), where (x,y) is a solution to x^2 + x*y + 4*y^2 = p^2 with y != 0; (3, sqrt(-15)) and (5, sqrt(-15)) are respectively the unique ideal with norm 3 and 5; for p == 7, 11, 13, 14 (mod 15), (p) is the only ideal with norm p^2.

Examples

			Let |I| be the norm of an ideal I, then:
|(2, (1+sqrt(-15))/2)| = |(2, (1-sqrt(-15))/2)| = 2;
|(3, sqrt(-15))| = 3;
|(5, sqrt(-15))| = 5;
|(17, 7+4*sqrt(-15))| = |(17, 7-4*sqrt(-15))| = 17;
|(2 + sqrt(-15))| = |(2 - sqrt(-15))| = 19;
|(23, 17+4*sqrt(-15))| = |(23, 17-4*sqrt(-15))| = 23;
|(4 + sqrt(-15))| = |(4 - sqrt(-15))| = 31.
		

Crossrefs

The number of distinct ideals with norm n is given by A035175.
Norms of prime ideals in O_K, where K is the quadratic field with discriminant D and O_K be the ring of integers of K: A055673 (D=8), A341783 (D=5), A055664 (D=-3), A055025 (D=-4), A090348 (D=-7), A341784 (D=-8), A341785 (D=-11), this sequence (D=-15*), A341787 (D=-19), A091727 (D=-20*), A341788 (D=-43), A341789 (D=-67), A341790 (D=-163). Here a "*" indicates the cases where O_K is not a unique factorization domain.

Programs

  • PARI
    isA341786(n) = my(disc=-15); (isprime(n) && kronecker(disc,n)>=0) || (issquare(n, &n) && isprime(n) && kronecker(disc,n)==-1)

A191037 Primes p that have Jacobi symbol (p|58) = 1.

Original entry on oeis.org

3, 7, 11, 19, 23, 37, 43, 61, 71, 101, 103, 131, 151, 157, 163, 167, 199, 211, 223, 229, 233, 239, 241, 251, 257, 269, 281, 293, 307, 313, 317, 331, 353, 379, 383, 389, 401, 421, 431, 439, 443, 457, 461, 463, 467, 487, 491, 521, 541, 563, 593, 619, 631, 647
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally incorrectly named "Primes which are squares mod 58", which is sequence A038901. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(647) | KroneckerSymbol(p, 58) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Maple
    select(t -> isprime(t) and numtheory:-jacobi(t,58)=1, [seq(i,i=3..1000,2)]); # Robert Israel, Jan 15 2016
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,58]==1&]
  • PARI
    select(p->kronecker(p,58)==1&&isprime(p),[1..1000]) \\ This is to provide a generic characteristic function ("is_A191037") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191040 Primes p that have Kronecker symbol (p|62) = 1.

Original entry on oeis.org

3, 7, 11, 13, 29, 37, 41, 43, 47, 53, 61, 71, 83, 97, 103, 113, 139, 179, 181, 191, 193, 197, 229, 233, 251, 257, 269, 277, 281, 311, 331, 347, 359, 389, 431, 439, 461, 479, 491, 499, 503, 509, 521, 523, 557, 571, 577, 587, 593, 599, 607, 613, 617, 619, 643
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 62)", which is sequence A267481. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(643) | KroneckerSymbol(p, 62) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,62]==1&]
  • PARI
    select(p->kronecker(p, 62)==1&&isprime(p), [1..1000]) \\ This is to provide a generic characteristic function ("is_A191040") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191042 Primes p that have Jacobi symbol (p|69) = 1.

Original entry on oeis.org

5, 11, 13, 17, 31, 53, 73, 83, 89, 107, 113, 127, 137, 139, 149, 151, 163, 191, 193, 211, 223, 227, 251, 263, 271, 277, 281, 293, 307, 331, 349, 359, 383, 389, 397, 401, 409, 419, 431, 439, 463, 467, 479, 487, 499, 503, 521, 541, 547, 557, 563, 569, 577, 601
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally incorrectly named "primes which are squares mod 69", which would be the sequence (3, 13, 31, 73, 127, 139, 151, 163, 193, 211, 223, 271, 277, 307, 331, 349, 397, ...). - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(601) | JacobiSymbol(p, 69) eq 1]; // Vincenzo Librandi, Sep 10 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,69]==1&]
  • PARI
    select(p->kronecker(p, 69)==1&&isprime(p), [1..1000]) \\ This is to provide a generic characteristic function ("is_A191043") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191043 Primes p that have Kronecker symbol (p|70) = 1.

Original entry on oeis.org

17, 19, 37, 43, 47, 53, 59, 61, 67, 71, 73, 79, 97, 101, 103, 107, 131, 139, 151, 163, 167, 181, 191, 197, 223, 229, 239, 251, 257, 269, 277, 281, 313, 317, 347, 349, 353, 359, 367, 373, 383, 401, 419, 431, 433, 443, 449, 461, 503, 509, 547, 557, 569, 577
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally incorrectly named "primes which are squares mod 70", which is sequence A106881. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(577) | KroneckerSymbol(p, 70) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,70]==1&]
  • PARI
    select(p->kronecker(p, 70)==1&&isprime(p), [1..1000]) \\ This is to provide a generic characteristic function ("is_A191043") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191046 Primes p that have Kronecker symbol (p|74) = 1.

Original entry on oeis.org

5, 7, 13, 19, 29, 41, 43, 47, 59, 61, 71, 73, 109, 127, 131, 137, 151, 163, 179, 223, 227, 233, 251, 263, 271, 277, 283, 331, 337, 347, 359, 367, 389, 421, 433, 461, 467, 499, 521, 523, 541, 547, 557, 563, 587, 593, 599, 601, 617, 641, 643, 653, 661, 673
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally incorrectly named "primes which are squares mod 74", which is sequence A038913. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(673) | KroneckerSymbol(p, 74) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,74]==1&]
  • PARI
    select(p->kronecker(p, 74)==1&&isprime(p), [1..1000]) \\ This is to provide a generic characteristic function ("is_A191046") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191049 Primes p that have Kronecker symbol (p|82) = 1.

Original entry on oeis.org

3, 11, 13, 19, 23, 29, 31, 53, 67, 73, 101, 103, 109, 113, 127, 149, 157, 179, 181, 211, 223, 227, 229, 241, 271, 293, 317, 331, 337, 347, 353, 359, 367, 397, 401, 409, 421, 431, 433, 449, 487, 499, 509, 547, 557, 563, 569, 571, 587, 599, 607, 617, 631, 643
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally incorrectly named "primes which are squares mod 82", which is sequence A038919. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(643) | KroneckerSymbol(p, 82) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,82]==1&]
  • PARI
    select(p->kronecker(p, 82)==1&&isprime(p), [1..1000]) \\ This is to provide a generic characteristic function ("is_A191049") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191062 Primes p that have Kronecker symbol (p|15) = -1.

Original entry on oeis.org

7, 11, 13, 29, 37, 41, 43, 59, 67, 71, 73, 89, 97, 101, 103, 127, 131, 149, 157, 163, 179, 191, 193, 223, 239, 251, 269, 277, 281, 283, 307, 311, 313, 337, 359, 367, 373, 389, 397, 401, 419, 431, 433, 449, 457, 461, 463, 479, 487, 491, 509, 521, 523, 547
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally erroneously named "Primes that are not squares mod 15". - M. F. Hasler, Jan 18 2016
Primes p == {7, 11, 13, 14} (mod 15). See A191018. - Wolfdieter Lang, May 24 2021

Crossrefs

Cf. A191018.

Programs

  • Magma
    [p: p in PrimesUpTo(547) | JacobiSymbol(p, 15) eq -1]; // Vincenzo Librandi, Sep 11 2012
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,15]==-1&]

Extensions

Definition corrected, following a suggestion from David Broadhurst, by M. F. Hasler, Jan 18 2016

A296937 Rational primes that decompose in the field Q(sqrt(13)).

Original entry on oeis.org

3, 17, 23, 29, 43, 53, 61, 79, 101, 103, 107, 113, 127, 131, 139, 157, 173, 179, 181, 191, 199, 211, 233, 251, 257, 263, 269, 277, 283, 311, 313, 337, 347, 367, 373, 389, 419, 433, 439, 443, 467, 491, 503, 521, 523, 547, 563, 569, 571, 599, 601, 607, 641
Offset: 1

Views

Author

N. J. A. Sloane, Dec 26 2017

Keywords

Comments

Is this the same sequence as A141188 or A038883? - R. J. Mathar, Jan 02 2018
From Jianing Song, Apr 21 2022: (Start)
Primes p such that Kronecker(13, p) = Kronecker(p, 13) = 1, where Kronecker() is the Kronecker symbol. That is to say, primes p that are quadratic residues modulo 13.
Primes p such that p^6 == 1 (mod 13).
Primes p == 1, 3, 4, 9, 10, 12 (mod 13). (End)

Crossrefs

Cf. A011583 (kronecker symbol modulo 13), A038883.
Rational primes that decompose in the quadratic field with discriminant D: A139513 (D=-20), A191019 (D=-19), A191018 (D=-15), A296920 (D=-11), A033200 (D=-8), A045386 (D=-7), A002144 (D=-4), A002476 (D=-3), A045468 (D=5), A001132 (D=8), A097933 (D=12), this sequence (D=13), A296938 (D=17).
Cf. A038884 (inert rational primes in the field Q(sqrt(13))).

Programs

Formula

Equals A038883 \ {13}. - Jianing Song, Apr 21 2022
Previous Showing 11-20 of 24 results. Next