A191710 Dispersion of A032763, (numbers >1 and congruent to 0, 1, 2, or 4 mod 5), by antidiagonals.
1, 2, 3, 4, 5, 8, 6, 7, 11, 13, 9, 10, 15, 17, 18, 12, 14, 20, 22, 24, 23, 16, 19, 26, 29, 31, 30, 28, 21, 25, 34, 37, 40, 39, 36, 33, 27, 32, 44, 47, 51, 50, 46, 42, 38, 35, 41, 56, 60, 65, 64, 59, 54, 49, 43, 45, 52, 71, 76, 82, 81, 75, 69, 62, 55, 48, 57
Offset: 1
Examples
Northwest corner: 1....2....4....6....9 3....5....7....10...14 8....11...15...20...26 13...17...22...29...37 18...24...31...40...51 23...30...39...50...64
Links
- Ivan Neretin, Table of n, a(n) for n = 1..5050 (first 100 antidiagonals, flattened)
Programs
-
Mathematica
(* Program generates the dispersion array T of the increasing sequence f[n] *) r = 40; r1 = 12; c = 40; c1 = 12; a=2; b=4; c2=5; d=6; m[n_]:=If[Mod[n,4]==0,1,0]; f[n_]:=a*m[n+3]+b*m[n+2]+c2*m[n+1]+d*m[n]+5*Floor[(n-1)/4] Table[f[n], {n, 1, 30}] (* A032763 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191710 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191710 *)
Comments