cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A318811 Expansion of e.g.f. exp(Sum_{k>=1} phi(k)*x^k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 1, 3, 19, 121, 1161, 9931, 124363, 1542129, 21594961, 335083411, 5712781251, 104044684393, 2036445474649, 42781075481691, 943820382272251, 22433542236603361, 556276331238284193, 14612462927067954979, 401110580118493111411, 11553483337639043003481
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 04 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[Sum[EulerPhi[k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, eulerphi(k)*x^k)))) \\ Seiichi Manyama, Apr 07 2022
    
  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, k*eulerphi(k)*a(n-k)/(n-k)!)); \\ Seiichi Manyama, Apr 07 2022

Formula

a(n) ~ 2^(1/3) * exp(1/6 + 3^(4/3) * n^(2/3) / (2^(1/3) * Pi^(2/3)) - n) * n^(n - 1/6) / (3*Pi)^(1/3).
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} k * phi(k) * a(n-k)/(n-k)!. - Seiichi Manyama, Apr 07 2022

A319107 Expansion of Product_{k>=1} (1 + x^k)^(sigma_1(k)-k), where sigma_1(k) = sum of divisors of k (A000203).

Original entry on oeis.org

1, 0, 1, 1, 3, 2, 9, 5, 17, 17, 38, 33, 88, 75, 169, 181, 343, 353, 712, 728, 1348, 1518, 2591, 2898, 5025, 5615, 9259, 10866, 17160, 20111, 31775, 37264, 57130, 68782, 102663, 123698, 183793, 221708, 323077, 395325, 566079, 693248, 987086, 1210110, 1700074, 2100674, 2915549
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 10 2018

Keywords

Comments

Convolution of A192065 and A255528.
Weigh transform of A001065.

Crossrefs

Programs

  • Maple
    with(numtheory): a:=series(mul((1+x^k)^(sigma(k)-k),k=1..100),x=0,47): seq(coeff(a,x,n),n=0..46); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 46; CoefficientList[Series[Product[(1 + x^k)^(DivisorSigma[1, k] - k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 46; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k/d + 1) d (DivisorSigma[1, d] - d), {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d (DivisorSigma[1, d] - d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 46}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A001065(k).
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d*(sigma_1(d) - d) ) * x^k/k).
a(n) ~ exp(-Pi^4 / (864*(Pi^2 - 6)*Zeta(3)) - Pi^2 * n^(1/3) / (12*(2*(Pi^2 - 6)*Zeta(3))^(1/3)) + 3*((Pi^2 - 6)*Zeta(3))^(1/3) * n^(2/3) / 2^(5/3)) * ((Pi^2 - 6)*Zeta(3))^(1/6) / (2^(17/24) * sqrt(3*Pi) * n^(2/3)). - Vaclav Kotesovec, Sep 11 2018

A316962 Expansion of Product_{k>=1} (1 + sigma(k)*x^k), where sigma(k) is the sum of the divisors of k (A000203).

Original entry on oeis.org

1, 1, 3, 7, 11, 25, 51, 87, 129, 286, 462, 760, 1312, 2102, 3470, 5988, 8840, 13884, 22577, 33545, 55961, 85341, 126705, 194317, 293621, 435040, 641472, 971503, 1462483, 2108161, 3124489, 4474579, 6545809, 9561923, 13518678, 19809034, 28387625, 40286631, 57039233
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 17 2018

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): a:=series(mul(1+sigma(k)*x^k,k=1..100),x=0,39): seq(coeff(a,x,n),n=0..38); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 38; CoefficientList[Series[Product[(1 + DivisorSigma[1, k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 38; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k + 1) DivisorSigma[1, j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d DivisorSigma[1, d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 38}]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*sigma(j)^k*x^(j*k)/k).

A318484 Expansion of Product_{k>=1} (1 + k*x^k)^sigma(k), where sigma = A000203.

Original entry on oeis.org

1, 1, 6, 18, 52, 142, 404, 1018, 2624, 6645, 16124, 38857, 92245, 214841, 494098, 1125062, 2522188, 5604930, 12327860, 26838595, 57913194, 123951482, 263019720, 553989989, 1158449522, 2405179547, 4961047246, 10168544537, 20714279168, 41952595411, 84494479578
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+k*x^k)^DivisorSigma[1, k], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; s = 1 + x; Do[s *= Sum[Binomial[DivisorSigma[1, k], j]*k^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[s, x]

A321877 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + x^j)^sigma_k(j).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 5, 7, 6, 1, 1, 9, 15, 14, 10, 1, 1, 17, 37, 41, 28, 17, 1, 1, 33, 99, 137, 107, 58, 25, 1, 1, 65, 277, 491, 487, 286, 106, 38, 1, 1, 129, 795, 1829, 2429, 1749, 700, 201, 59, 1, 1, 257, 2317, 6971, 12763, 12056, 5901, 1735, 372, 86
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 20 2018

Keywords

Examples

			Square array begins:
   1,   1,    1,    1,     1,      1,  ...
   1,   1,    1,    1,     1,      1,  ...
   2,   3,    5,    9,    17,     33,  ...
   4,   7,   15,   37,    99,    277,  ...
   6,  14,   41,  137,   491,   1829,  ...
  10,  28,  107,  487,  2429,  12763,  ...
		

Crossrefs

Main diagonal gives A321042.
Cf. A321876.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 + x^j)^DivisorSigma[k, j], {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 10}, {n, 0, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Exp[Sum[DivisorSigma[k + 1, j] x^j/(j (1 - x^(2 j))), {j, 1, n}]], {x, 0, n}]][i - n], {i, 0, 10}, {n, 0, i}] // Flatten

Formula

G.f. of column k: Product_{i>=1, j>=1} (1 + x^(i*j))^(j^k).
G.f. of column k: exp(Sum_{j>=1} sigma_(k+1)(j)*x^j/(j*(1 - x^(2*j)))).

A326831 Expansion of Product_{i>=2, j>=2} (1 + x^(i*j))^j.

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 5, 0, 7, 3, 17, 0, 37, 6, 58, 23, 120, 21, 235, 67, 390, 161, 726, 230, 1349, 521, 2225, 1055, 3990, 1714, 7040, 3341, 11604, 6294, 20053, 10500, 34252, 19115, 56055, 34168, 94306, 56998, 157078, 99515, 254766, 171484, 419287, 283565
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 20 2019

Keywords

Comments

Weigh transform of A048050.
Convolution of A326831 and A025147 is A319107. - Vaclav Kotesovec, Oct 26 2019

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n) option remember; `if`(n<4, 0, sigma(n)-1-n) end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*binomial(g(i), j), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Oct 20 2019
  • Mathematica
    nmax = 47; CoefficientList[Series[Product[(1 + x^k)^(DivisorSigma[1, k] - k - 1), {k, 2, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[If[d == 1, 0, (-1)^(k/d + 1) d (DivisorSigma[1, d] - d - 1)], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 47}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A048050(k).
a(n) ~ exp(3*(2*(Pi^2 - 6)*Zeta(3))^(1/3) * n^(2/3)/4 - Pi^2 * n^(1/3) / (2^(7/3) * ((Pi^2 - 6)*Zeta(3))^(1/3)) - Pi^4 / (96*(Pi^2 - 6)*Zeta(3))) * 2^(19/24) * ((Pi^2 - 6)*Zeta(3))^(1/6) / (sqrt(3*Pi) * n^(2/3)). - Vaclav Kotesovec, Oct 26 2019

A328776 Product_{n>=1} (1 + x^n)^a(n) = 1 + Sum_{n>=1} sigma(n) * x^n, where sigma = A000203.

Original entry on oeis.org

1, 3, 1, 3, -3, 2, -1, 4, 3, -8, -1, 6, 3, -4, -7, 12, 1, -6, 7, 0, -13, -13, 27, 13, -19, -11, 11, -21, -25, 191, -81, -300, 89, 327, 325, -745, -275, 579, -255, 1287, -453, -2075, -583, 2142, 5985, -6698, -6661, 6981, 3045, 3857, -7205, -2784, -5447, -4891, 48547
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 27 2019

Keywords

Comments

Inverse weigh transform of A000203.

Crossrefs

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; a[n_] := a[n] = DivisorSigma[1, n] - b[n, n - 1]; Array[a, 55]
Previous Showing 21-27 of 27 results.