A192942
Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x)=(2x+1)(2x+2)...(2x+n).
Original entry on oeis.org
0, 2, 10, 62, 448, 3688, 34056, 348568, 3916352, 47919520, 634256480, 9029234720, 137569217280, 2233574372480, 38497936301440, 702049663399040, 13504656880506880, 273280886412413440, 5803407252377602560, 129044887279907315200
Offset: 0
The first four polynomials p(n,x) and their reductions are as follows:
p(0,x) = 1
p(1,x) = 2x+1 -> 1+2x
p(2,x) = (2x+1)(2x+2) -> 6+10x
p(3,x) = (2x+1)(2x+2)(2x+3) -> 38+62x
From these, read
A192941=(1,2,6,38,...) and A192942=(0,2,10,62,...)
-
SetDefaultRealField(RealField(100)); R:= RealField(); s:=Sqrt(5); [Round(s*Gamma(n+2+s)/Gamma(s+2) - Sin(Pi(R)*(s+3))*Gamma(s+1) *Gamma(n+2-s)/(Pi(R)*(s-1)))/5: n in [0..20]]; // G. C. Greubel, Jul 25 2019
-
(* First program *)
q = x^2; s = x + 1; z = 26;
p[0, x]:= 1;
p[n_, x_]:= (2x+n)*p[n-1, x];
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192941 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192942 *)
u2/2 (* A192950 *)
(* Second program *)
With[{s = Sqrt[5]}, Table[FullSimplify[(s*Gamma[n+2+s]/Gamma[s+2] - Sin[Pi*(s+3)]*Gamma[s+1]*Gamma[n+2-s]/(Pi*(s-1)))/5], {n, 0, 20}]] (* G. C. Greubel, Jul 26 2019 *)
-
default(realprecision, 100); vector(20, n, n--; s=sqrt(5); round(s*gamma(n+2+s)/gamma(s+2) - sin(Pi*(s+3))*gamma(s+1)*gamma(n+2-s)/(Pi*(s-1)))/5 ) \\ G. C. Greubel, Jul 25 2019
-
s=sqrt(5); [round(s*gamma(n+2+s)/gamma(s+2) - sin(pi*(s+3))* gamma(s+1)*gamma(n+2-s)/(pi*(s-1)))/5 for n in (0..20)] # G. C. Greubel, Jul 25 2019
A192953
Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
Original entry on oeis.org
0, 1, 2, 6, 13, 26, 48, 85, 146, 246, 409, 674, 1104, 1801, 2930, 4758, 7717, 12506, 20256, 32797, 53090, 85926, 139057, 225026, 364128, 589201, 953378, 1542630, 2496061, 4038746, 6534864, 10573669, 17108594, 27682326, 44790985, 72473378
Offset: 0
-
F:=Fibonacci;; List([0..40], n-> 3*F(n+2)-(2*n+3)); # G. C. Greubel, Jul 12 2019
-
F:=Fibonacci; [3*F(n+2)-(2*n+3): n in [0..40]]; // G. C. Greubel, Jul 12 2019
-
(* First program *)
q = x^2; s = x + 1; z = 40;
p[0, x]:= 1;
p[n_, x_]:= x*p[n-1, x] + 2n - 1;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A111314 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192953 *)
(* Second program *)
With[{F=Fibonacci}, Table[3*F[n+2]-(2*n+3), {n,0,40}]] (* G. C. Greubel, Jul 12 2019 *)
-
vector(40, n, n--; f=fibonacci; 3*f(n+2)-(2*n+3)) \\ G. C. Greubel, Jul 12 2019
-
f=fibonacci; [3*f(n+2)-(2*n+3) for n in (0..40)] # G. C. Greubel, Jul 12 2019
A192954
Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
Original entry on oeis.org
1, 1, 5, 11, 23, 43, 77, 133, 225, 375, 619, 1015, 1657, 2697, 4381, 7107, 11519, 18659, 30213, 48909, 79161, 128111, 207315, 335471, 542833, 878353, 1421237, 2299643, 3720935, 6020635, 9741629, 15762325, 25504017, 41266407, 66770491
Offset: 0
-
List([0..40], n-> 2*Lucas(1,-1,n+2)[2]-(2*n+5)); # G. C. Greubel, Jul 12 2019
-
[2*Lucas(n+2)-(2*n+5): n in [0..40]]; // G. C. Greubel, Jul 12 2019
-
(* First program *)
q = x^2; s = x + 1; z = 40;
p[0, x]:= 1;
p[n_, x_]:= x*p[n-1, x] + n^2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192954 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192955 *)
(* Second program *)
Table[2*LucasL[n+2]-(2*n+5), {n,0,40}] (* G. C. Greubel, Jul 12 2019 *)
LinearRecurrence[{3,-2,-1,1},{1,1,5,11},40] (* Harvey P. Dale, Jan 13 2022 *)
-
vector(40, n, n--; f=fibonacci; 2*(f(n+3)+f(n+1))-(2*n+5)) \\ G. C. Greubel, Jul 12 2019
-
[2*lucas_number2(n+2,1,-1)-(2*n+5) for n in (0..40)] # G. C. Greubel, Jul 12 2019
A192955
Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
Original entry on oeis.org
0, 1, 2, 7, 18, 41, 84, 161, 294, 519, 894, 1513, 2528, 4185, 6882, 11263, 18370, 29889, 48548, 78761, 127670, 206831, 334942, 542257, 877728, 1420561, 2298914, 3720151, 6019794, 9740729, 15761364, 25502993, 41265318, 66769335, 108035742
Offset: 0
-
List([0..40], n-> 2*Lucas(1,-1,n+3)[2]-(n^2+4*n+8)); # G. C. Greubel, Jul 12 2019
-
[2*Lucas(n+3)-(n^2+4*n+8): n in [0..40]]; // G. C. Greubel, Jul 12 2019
-
(* First program *)
q = x^2; s = x + 1; z = 40;
p[0, x]:= 1;
p[n_, x_]:= x*p[n-1, x] + n^2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192954 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192955 *)
(* Second program *)Table[2*LucasL[n+3]-(n^2+4*n+8), {n,0,40}] (* G. C. Greubel, Jul 12 2019 *)
-
vector(40, n, n--; f=fibonacci; 2*(f(n+4)+f(n+2))-(n^2+4*n+8)) \\ G. C. Greubel, Jul 12 2019
-
[2*lucas_number2(n+3,1,-1)-(n^2+4*n+8) for n in (0..40)] # G. C. Greubel, Jul 12 2019
A192956
Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
Original entry on oeis.org
1, 0, 4, 9, 20, 38, 69, 120, 204, 341, 564, 926, 1513, 2464, 4004, 6497, 10532, 17062, 27629, 44728, 72396, 117165, 189604, 306814, 496465, 803328, 1299844, 2103225, 3403124, 5506406, 8909589, 14416056, 23325708, 37741829, 61067604, 98809502
Offset: 0
-
F:=Fibonacci;; List([0..40], n-> F(n+3)+4*F(n+1)-(2*n+5)); # G. C. Greubel, Jul 12 2019
-
F:=Fibonacci; [F(n+3)+4*F(n+1)-(2*n+5): n in [0..40]]; // G. C. Greubel, Jul 12 2019
-
(* First program *)
q = x^2; s = x + 1; z = 40;
p[0, x]:= 1;
p[n_, x_]:= x*p[n-1, x] + n^2 - 1;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192956 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192957 *)
(* Second program *)
With[{F=Fibonacci}, Table[F[n+3]+4*F[n+1]-(2*n+5), {n,0,40}]] (* G. C. Greubel, Jul 12 2019 *)
-
vector(40, n, n--; f=fibonacci; f(n+3)+4*f(n+1)-(2*n+5)) \\ G. C. Greubel, Jul 12 2019
-
f=fibonacci; [f(n+3)+4*f(n+1)-(2*n+5) for n in (0..40)] # G. C. Greubel, Jul 12 2019
A192957
Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
Original entry on oeis.org
0, 1, 1, 5, 14, 34, 72, 141, 261, 465, 806, 1370, 2296, 3809, 6273, 10277, 16774, 27306, 44368, 71997, 116725, 189121, 306286, 495890, 802704, 1299169, 2102497, 3402341, 5505566, 8908690, 14415096, 23324685, 37740741, 61066449, 98808278
Offset: 0
-
F:=Fibonacci;; List([0..40], n-> F(n+4)+4*F(n+2)-(n^2+4*n+7)); # G. C. Greubel, Jul 12 2019
-
F:=Fibonacci; [F(n+4)+4*F(n+2)-(n^2+4*n+7): n in [0..40]]; // G. C. Greubel, Jul 12 2019
-
(* First program *)
q = x^2; s = x + 1; z = 40;
p[0, x]:= 1;
p[n_, x_]:= x*p[n-1, x] + n^2 - 1;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192956 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192957 *)
(* Second program *)With[{F=Fibonacci}, Table[F[n+4]+4*F[n+2]-(n^2+4*n+7), {n,0,40}]] (* G. C. Greubel, Jul 12 2019 *)
-
vector(40, n, n--; f=fibonacci; f(n+4)+4*f(n+2)-(n^2+4*n+7)) \\ G. C. Greubel, Jul 12 2019
-
f=fibonacci; [f(n+4)+4*f(n+2)-(n^2+4*n+7) for n in (0..40)] # G. C. Greubel, Jul 12 2019
A192958
Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
Original entry on oeis.org
1, -1, 3, 7, 17, 33, 61, 107, 183, 307, 509, 837, 1369, 2231, 3627, 5887, 9545, 15465, 25045, 40547, 65631, 106219, 171893, 278157, 450097, 728303, 1178451, 1906807, 3085313, 4992177, 8077549, 13069787, 21147399, 34217251, 55364717, 89582037
Offset: 0
-
F:=Fibonacci;; List([0..40], n-> 6*F(n+1)-(2*n+5)); # G. C. Greubel, Jul 12 2019
-
F:=Fibonacci; [6*F(n+1)-(2*n+5): n in [0..40]]; // G. C. Greubel, Jul 12 2019
-
(* First program *)
q = x^2; s = x + 1; z = 40;
p[0, x]:= 1;
p[n_, x_]:= x*p[n-1, x] + n^2 - 2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192958 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192959 *)
(* Second program *)
With[{F=Fibonacci}, Table[6*F[n+1]-(2*n+5), {n,0,40}]] (* G. C. Greubel, Jul 12 2019 *)
-
vector(40, n, n--; f=fibonacci; 6*f(n+1)-(2*n+5)) \\ G. C. Greubel, Jul 12 2019
-
f=fibonacci; [6*f(n+1)-(2*n+5) for n in (0..40)] # G. C. Greubel, Jul 12 2019
A192959
Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
Original entry on oeis.org
0, 1, 0, 3, 10, 27, 60, 121, 228, 411, 718, 1227, 2064, 3433, 5664, 9291, 15178, 24723, 40188, 65233, 105780, 171411, 277630, 449523, 727680, 1177777, 1906080, 3084531, 4991338, 8076651, 13068828, 21146377, 34216164, 55363563, 89580814
Offset: 0
-
F:=Fibonacci;; List([0..40], n-> 6*F(n+2)-(n^2+4*n+6)); # G. C. Greubel, Jul 12 2019
-
F:=Fibonacci; [6*F(n+2)-(n^2+4*n+6): n in [0..40]]; // G. C. Greubel, Jul 12 2019
-
(* First program *)
q = x^2; s = x + 1; z = 40;
p[0, x]:= 1;
p[n_, x_]:= x*p[n-1, x] + n^2 - 2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192958 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192959 *)
(* Second program *)
With[{F=Fibonacci}, Table[6*F[n+2]-(n^2+4*n+6), {n,0,40}]] (* G. C. Greubel, Jul 12 2019 *)
-
vector(40, n, n--; f=fibonacci; 6*f(n+2)-(n^2+4*n+6)) \\ G. C. Greubel, Jul 12 2019
-
f=fibonacci; [6*f(n+2)-(n^2+4*n+6) for n in (0..40)] # G. C. Greubel, Jul 12 2019
A192961
Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
Original entry on oeis.org
0, 1, 4, 11, 26, 55, 108, 201, 360, 627, 1070, 1799, 2992, 4937, 8100, 13235, 21562, 35055, 56908, 92289, 149560, 242251, 392254, 634991, 1027776, 1663345, 2691748, 4355771, 7048250, 11404807, 18453900, 29859609, 48314472, 78175107, 126490670
Offset: 0
-
F:=Fibonacci;; List([0..40], n-> 2*F(n+5)-(n^2+4*n+10)); # G. C. Greubel, Jul 12 2019
-
F:=Fibonacci; [2*F(n+5)-(n^2+4*n+10): n in [0..40]]; // G. C. Greubel, Jul 12 2019
-
(* First program *)
q = x^2; s = x + 1; z = 40;
p[0, x]:= 1;
p[n_, x_]:= x*p[n-1, x] + n^2 + 2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192960 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192961 *)
(* Second program *)
With[{F=Fibonacci}, Table[2*F[n+5]-(n^2+4*n+10), {n,0,40}]] (* G. C. Greubel, Jul 12 2019 *)
LinearRecurrence[{4,-5,1,2,-1},{0,1,4,11,26},40] (* Harvey P. Dale, Dec 30 2024 *)
-
vector(40, n, n--; f=fibonacci; 2*f(n+5)-(n^2+4*n+10)) \\ G. C. Greubel, Jul 12 2019
-
f=fibonacci; [2*f(n+5)-(n^2+4*n+10) for n in (0..40)] # G. C. Greubel, Jul 12 2019
A192962
Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
Original entry on oeis.org
1, 2, 7, 15, 30, 55, 97, 166, 279, 463, 762, 1247, 2033, 3306, 5367, 8703, 14102, 22839, 36977, 59854, 96871, 156767, 253682, 410495, 664225, 1074770, 1739047, 2813871, 4552974, 7366903, 11919937, 19286902, 31206903, 50493871, 81700842
Offset: 1
-
F:=Fibonacci;; List([1..40], n-> 3*F(n+1) +4*F(n) -2*(n+2)); # G. C. Greubel, Jul 12 2019
-
F:=Fibonacci; [3*F(n+1) +4*F(n) -2*(n+2): n in [1..40]]; // G. C. Greubel, Jul 12 2019
-
(* First program *)
q = x^2; s = x + 1; z = 40;
p[0, x]:= 1;
p[n_, x_]:= x*p[n-1, x] + n(n+1);
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192962 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192963 *)
(* Additional programs *)
CoefficientList[Series[(1-x+3x^2-x^3)/((1-x-x^2)(1-x)^2), {x, 0, 40}], x] (* Vincenzo Librandi, May 09 2014 *)
With[{F=Fibonacci}, Table[3*F[n+1]+4*F[n] -2*(n+2), {n,1,40}]] (* G. C. Greubel, Jul 12 2019 *)
-
vector(40, n, f=fibonacci; 3*f(n+1)+4*f(n)-2*(n+2)) \\ G. C. Greubel, Jul 12 2019
-
f=fibonacci; [3*f(n+1) +4*f(n) -2*(n+2) for n in (1..40)] # G. C. Greubel, Jul 12 2019
Comments