A192387
Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
0, 2, 4, 32, 96, 512, 1856, 8576, 33792, 147456, 602112, 2566144, 10637312, 44892160, 187269120, 787087360, 3292069888, 13812760576, 57837355008, 242497880064, 1015868817408, 4258009186304, 17841063460864, 74771320537088, 313317428035584
Offset: 1
The first five polynomials p(n,x) and their reductions are as follows:
p(0,x) = 1 -> 1
p(1,x) = 2*x -> 2*x
p(2,x) = 3 + x + 3*x^2 -> 8 + 4*x
p(3,x) = 12*x + 4*x^2 + 4*x^3 -> 8 + 32*x
p(4,x) = 9 + 6*x + 31*x^2 + 10*x^3 + 5*x^4 -> 96 + 96*x.
From these, read A192386 = (1, 0, 8, 8, 96, ...) and a(n) = (0, 2, 4, 32, 96, ...).
-
R:=PowerSeriesRing(Integers(), 41);
[0] cat Coefficients(R!( 2*x^2/(1-2*x-12*x^2+8*x^3+16*x^4) )); // G. C. Greubel, Jul 10 2023
-
(See A192386.)
LinearRecurrence[{2,12,-8,-16}, {0,2,4,32}, 40] (* G. C. Greubel, Jul 10 2023 *)
-
@CachedFunction
def a(n): # a = A192387
if (n<5): return (0,0,2,4,32)[n]
else: return 2*a(n-1) +12*a(n-2) -8*a(n-3) -16*a(n-4)
[a(n) for n in range(1,41)] # G. C. Greubel, Jul 10 2023
Original entry on oeis.org
0, 1, 2, 16, 48, 256, 928, 4288, 16896, 73728, 301056, 1283072, 5318656, 22446080, 93634560, 393543680, 1646034944, 6906380288, 28918677504, 121248940032, 507934408704, 2129004593152, 8920531730432, 37385660268544, 156658714017792
Offset: 1
The first five polynomials p(n,x) and their reductions are as follows:
p(0,x) = 1 -> 1
p(1,x) = 2*x -> 2*x
p(2,x) = 3 + x + 3*x^2 -> 8 + 4*x
p(3,x) = 12*x + 4*x^2 + 4*x^3 -> 8 + 32*x
p(4,x) = 9 + 6*x + 31*x^2 + 10*x^3 + 5*x^4 -> 96 + 96*x.
From these, read a(n) = (0, 2, 4, 32, 96, ...)/2 = (0, 1, 2, 16, 48, ...).
-
R:=PowerSeriesRing(Integers(), 41);
[0] cat Coefficients(R!( x^2/(1-2*x-12*x^2+8*x^3+16*x^4) )); // G. C. Greubel, Jul 10 2023
-
(* See A192386 *)
LinearRecurrence[{2,12,-8,-16}, {0,1,2,16}, 40] (* G. C. Greubel, Jul 10 2023 *)
-
@CachedFunction
def a(n): # a = A192388
if (n<5): return (0,0,1,2,16)[n]
else: return 2*a(n-1) +12*a(n-2) -8*a(n-3) -16*a(n-4)
[a(n) for n in range(1,41)] # G. C. Greubel, Jul 10 2023
A192423
Constant term of the reduction by x^2 -> x+2 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
2, 0, 4, 2, 16, 20, 78, 140, 416, 878, 2324, 5280, 13282, 31200, 76724, 182962, 445376, 1069300, 2591118, 6239980, 15089776, 36389278, 87917284, 212144640, 512334722, 1236606720, 2985883684, 7207831202, 17402424496, 42011258900
Offset: 0
The first five polynomials p(n,x) and their reductions are as follows:
p(0,x) = 2 -> 2
p(1,x) = x -> x
p(2,x) = 2 + x^2 -> 4 + x
p(3,x) = 3*x + x^3 -> 2 + 6*x
p(4,x) = 2 + 4*x^2 + x^4 -> 16 + 9*x.
From these, read a(n) = (2, 0, 4, 2, 16, ...) and A192424 = (0, 1, 1, 6, 9, ...).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 2*(1+x)*(1-2*x)/((1+x-x^2)*(1-2*x-x^2)) )); // G. C. Greubel, Jul 11 2023
-
q[x_]:= x+2; d= Sqrt[x^2+4];
p[n_, x_]:= ((x+d)/2)^n + ((x-d)/2)^n (* A161514 *)
Table[Expand[p[n, x]], {n, 0, 6}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
t= Table[FixedPoint[Expand[#1/. reductionRules] &, p[n,x]], {n,0,30}]
Table[Coefficient[Part[t, n], x, 0], {n,30}] (* A192423 *)
Table[Coefficient[Part[t, n], x, 1], {n,30}] (* A192424 *)
Table[Coefficient[Part[t, n]/2, x, 1], {n,30}] (* A192425 *)
LinearRecurrence[{1,4,-1,-1}, {2,0,4,2}, 40] (* G. C. Greubel, Jul 11 2023 *)
-
@CachedFunction
def a(n): # a = A192423
if (n<4): return (2,0,4,2)[n]
else: return a(n-1) +4*a(n-2) -a(n-3) -a(n-4)
[a(n) for n in range(41)] # G. C. Greubel, Jul 11 2023
Original entry on oeis.org
1, 0, 2, 1, 8, 10, 39, 70, 208, 439, 1162, 2640, 6641, 15600, 38362, 91481, 222688, 534650, 1295559, 3119990, 7544888, 18194639, 43958642, 106072320, 256167361, 618303360, 1492941842, 3603915601, 8701212248, 21005629450
Offset: 0
The first five polynomials p(n,x) and their reductions are as follows:
p(0,x) = 2 -> 2
p(1,x) = x -> x
p(2,x) = 2 + x^2 -> 4 + x
p(3,x) = 3*x + x^3 -> 2 + 6*x
p(4,x) = 2 + 4*x^2 + x^4 -> 16 + 9*x.
From these, read A192423(n) = 2*a(n) = (2, 0, 4, 2, 16, ...) and A192425 = (0, 1, 1, 6, 9, ...).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-2*x)/((1+x-x^2)*(1-2*x-x^2)) )); // G. C. Greubel, Jul 12 2023
-
(See A192423.)
LinearRecurrence[{1,4,-1,-1}, {1,0,2,1}, 40] (* G. C. Greubel, Jul 12 2023 *)
-
@CachedFunction
def a(n): # a = A192424
if (n<4): return (1,0,2,1)[n]
else: return a(n-1) +4*a(n-2) -a(n-3) -a(n-4)
[a(n) for n in range(41)] # G. C. Greubel, Jul 12 2023
A192466
Coefficient of x in the reduction by x^2->x+2 of the polynomial p(n,x)=1+x^n+x^(2n).
Original entry on oeis.org
2, 6, 24, 90, 352, 1386, 5504, 21930, 87552, 349866, 1398784, 5593770, 22372352, 89483946, 357924864, 1431677610, 5726666752, 22906579626, 91626143744, 366504225450, 1466016202752, 5864063412906, 23456250855424, 93824997829290
Offset: 1
The first four polynomials p(n,x) and their reductions are as follows:
p(1,x)=1+x+x^2 -> 3+2x
p(2,x)=1+x^2+x^4 -> 9+6x
p(3,x)=1+x^3+x^6 -> 25+24x
p(4,x)=1+x^4+x^8 -> 93+90x.
From these, read
A192465=(3,9,25,93,...) and A192466=(2,6,24,90,...)
A192468
Constant term of the reduction by x^2->x+3 of the polynomial p(n,x)=1+x^n+x^(2n).
Original entry on oeis.org
4, 16, 61, 304, 1546, 8107, 42748, 226240, 1198645, 6353944, 33688474, 178631251, 947215924, 5022815920, 26634734125, 141237718720, 748951245034, 3971518837243, 21060069709228, 111676816254688, 592197081386533, 3140288211876136
Offset: 1
The first four polynomials p(n,x) and their reductions are as follows:
p(1,x)=1+x+x^2 -> 4+2x
p(2,x)=1+x^2+x^4 -> 16+8x
p(3,x)=1+x^3+x^6 -> 61+44x
p(4,x)=1+x^4+x^8 -> 304+224x.
From these, read
A192468=(4,16,61,304,...) and A192469=(2,8,44,224,...)
-
Remove["Global`*"];
q[x_] := x + 3; p[n_, x_] := 1 + x^n + x^(2 n);
Table[Simplify[p[n, x]], {n, 1, 5}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[FixedPoint[Expand[#1 /. reductionRules] &, p[n, x]], {n, 1, 30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]
(* A192468 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]
(* A192469 *)
Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}]
(* A192470 *)
A192469
Coefficient of x in the reduction by x^2->x+3 of the polynomial p(n,x)=1+x^n+x^(2n).
Original entry on oeis.org
2, 8, 44, 224, 1178, 6200, 32786, 173600, 919988, 4877072, 25858754, 137115440, 727074530, 3855471416, 20444603516, 108412922240, 574888887530, 3048505597160, 16165538467442, 85722217226576, 454565670533252, 2410459729834544
Offset: 1
The first four polynomials p(n,x) and their reductions are as follows:
p(1,x)=1+x+x^2 -> 4+2x
p(2,x)=1+x^2+x^4 -> 16+8x
p(3,x)=1+x^3+x^6 -> 61+44x
p(4,x)=1+x^4+x^8 -> 304+224x.
From these, read
A192468=(4,16,61,304,...) and A192469=(2,8,44,224,...)
A192617
Coefficient of x in the reduction of the n-th Fibonacci polynomial by x^3->x^2+x+1.
Original entry on oeis.org
0, 1, 0, 3, 2, 10, 16, 43, 92, 213, 486, 1100, 2522, 5719, 13068, 29721, 67772, 154334, 351670, 801137, 1825184, 4158219, 9473244, 21582392, 49169220, 112018989, 255203904, 581412535, 1324587918, 3017709810, 6875021540, 15662845615
Offset: 1
The first five polynomials p(n,x) and their reductions are as follows:
F1(x)=1 -> 1
F2(x)=x -> x
F3(x)=x^2+1 -> x^2+1
F4(x)=x^3+2x -> x^2+3x+1
F5(x)=x^4+3x^2+1 -> 4x^2+2x+2, so that
A192616=(1,0,1,1,2,...), A192617=(0,1,0,3,2,...), A192651=(0,0,1,1,5,...)
-
(See A192616.)
LinearRecurrence[{1,4,-1,-4,1,1},{0,1,0,3,2,10},40] (* Harvey P. Dale, Feb 23 2021 *)
A192651
Coefficient of x^2 in the reduction of the n-th Fibonacci polynomial by x^3->x^2+x+1. See Comments.
Original entry on oeis.org
0, 0, 1, 1, 5, 8, 23, 47, 113, 252, 578, 1316, 2994, 6832, 15545, 35445, 80711, 183928, 418973, 954571, 2174681, 4954436, 11287336, 25715016, 58584744, 133468980, 304072713, 692745597, 1578230845, 3595564360, 8191505015, 18662090915
Offset: 1
The first five polynomials p(n,x) and their reductions are as follows:
F1(x)=1 -> 1
F2(x)=x -> x
F3(x)=x^2+1 -> x^2+1
F4(x)=x^3+2x -> x^2+3x+1
F5(x)=x^4+3x^2+1 -> 4x^2+2x+2, so that
A192616=(1,0,1,1,2,...), A192617=(0,1,0,3,2,...), A192651=(0,0,1,1,5,...)
A192752
Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
1, 7, 12, 23, 39, 66, 109, 179, 292, 475, 771, 1250, 2025, 3279, 5308, 8591, 13903, 22498, 36405, 58907, 95316, 154227, 249547, 403778, 653329, 1057111, 1710444, 2767559, 4478007, 7245570, 11723581, 18969155, 30692740, 49661899, 80354643
Offset: 0
-
q = x^2; s = x + 1; z = 40;
p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + 4 n + 3;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}](* A192752 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}](* A192753 *)
Comments