cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A333361 Array read by antidiagonals: T(n,k) is the number of directed loopless multigraphs with n arcs and k vertices.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 2, 0, 0, 1, 1, 5, 2, 0, 0, 1, 1, 6, 10, 3, 0, 0, 1, 1, 6, 20, 24, 3, 0, 0, 1, 1, 6, 23, 69, 42, 4, 0, 0, 1, 1, 6, 24, 110, 196, 83, 4, 0, 0, 1, 1, 6, 24, 126, 427, 554, 132, 5, 0, 0, 1, 1, 6, 24, 129, 603, 1681, 1368, 222, 5, 0, 0
Offset: 0

Views

Author

Andrew Howroyd, Mar 16 2020

Keywords

Examples

			==================================================
n\k | 0 1 2   3    4     5     6      7      8
----+---------------------------------------------
  0 | 1 1 1   1    1     1     1      1      1 ...
  1 | 0 0 1   1    1     1     1      1      1 ...
  2 | 0 0 2   5    6     6     6      6      6 ...
  3 | 0 0 2  10   20    23    24     24     24 ...
  4 | 0 0 3  24   69   110   126    129    130 ...
  5 | 0 0 3  42  196   427   603    668    684 ...
  6 | 0 0 4  83  554  1681  2983   3811   4116 ...
  7 | 0 0 4 132 1368  5881 13681  20935  24979 ...
  8 | 0 0 5 222 3240 19448 59680 112943 154504 ...
  ...
		

Crossrefs

Programs

  • PARI
    \\ here G(k,x) gives column k as rational function.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^(v[i]-1))}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p, i->1-x^i)); s/n!}
    T(n)={Mat(vector(n+1, k, Col(O(y*y^n) + G(k-1, y + O(y*y^n)))))}
    {my(A=T(10)); for(n=1, #A, print(A[n, ]))}

Formula

T(n,k) = A052170(n) for k >= 2*n.

A265581 Number of (unlabeled) loopless multigraphs such that the sum of the numbers of vertices and edges is n.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 16, 29, 56, 110, 222, 465, 1003, 2226, 5101, 12010, 29062, 72200, 183886, 479544, 1279228, 3486584, 9699975, 27520936, 79563707, 234204235, 701458966, 2136296638, 6611816700, 20784932424, 66333327604, 214819211047, 705650404444, 2350231740975
Offset: 0

Views

Author

Michael Joseph, Dec 10 2015

Keywords

Comments

Also the number of skeletal 2-cliquish graphs with n vertices. See Einstein et al. link below.
a(n) is the sum of A265580(k) as k ranges from 0 to n. This is because there is a bijection between loopless multigraphs (V,E) satisfying |V| + |E| = k with no isolated vertices and loopless multigraphs (V,E) satisfying |V| + |E| = n with exactly n-k isolated vertices.

Examples

			For n = 4, the a(4) = 3 such multigraphs are the graph with four isolated vertices, the graph with three vertices and an edge between two of them, and the graph with two vertices connected by two edges.
		

Crossrefs

Programs

  • PARI
    \\ Needs G from A191646.
    seq(n)={vector(n+1,i,1) + sum(k=1, n, concat(vector(n-k+1), G(n-k, k)))} \\ Andrew Howroyd, Feb 01 2020

Formula

a(n) = Sum_{k=0..n} A265580(k).
From Andrew Howroyd, Feb 01 2020: (Start)
a(n) = Sum_{i=1..n} A192517(i, n-i) for n > 0.
Euler transform of A265582. (End)

Extensions

Terms a(19) and beyond from Andrew Howroyd, Feb 01 2020

A309936 Irregular triangle read by rows: T(n,k) is the number of unlabeled loopless multigraphs with n edges covering k vertices, n >= 1, 1 <= k <= 2*n.

Original entry on oeis.org

0, 1, 0, 1, 1, 1, 0, 1, 2, 3, 1, 1, 0, 1, 3, 7, 6, 4, 1, 1, 0, 1, 4, 13, 17, 17, 8, 4, 1, 1, 0, 1, 6, 25, 44, 56, 41, 24, 9, 4, 1, 1, 0, 1, 7, 40, 101, 164, 158, 117, 57, 26, 9, 4, 1, 1, 0, 1, 9, 65, 216, 450, 562, 503, 315, 162, 64, 27, 9, 4, 1, 1
Offset: 1

Views

Author

Andrew Howroyd, Oct 23 2019

Keywords

Comments

Covering k vertices means there are no vertices of degree zero.

Examples

			Triangle begins:
  0, 1;
  0, 1, 1,  1;
  0, 1, 2,  3,   1,   1;
  0, 1, 3,  7,   6,   4,   1,   1;
  0, 1, 4, 13,  17,  17,   8,   4,  1,  1;
  0, 1, 6, 25,  44,  56,  41,  24,  9,  4, 1, 1;
  0, 1, 7, 40, 101, 164, 158, 117, 57, 26, 9, 4, 1, 1;
  ...
		

Crossrefs

Row sums are A050535.
Columns k=3..4 are A253186, A328652.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    C(n,m)={my(s=O(x*x^m)); forpart(p=n, s+=permcount(p)/edges(p, i->1-x^i+O(x*x^m))); Col(s/n!)}
    T(m) = {my(n=2*m, A=Mat(vector(n+1, n, C(n-1,m)))); A[2..m+1, 2..n+1]-A[2..m+1, 1..n]}
    { my(A=T(8)); for(n=1, matsize(A)[1], print(A[n, 1..2*n])) }

Formula

T(n,k) = A192517(k,n) - A192517(k-1,n) for k > 1.
Previous Showing 11-13 of 13 results.