cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A276171 Irregular triangle T(n,k) read by rows: The number of tilings of the n X n board by 1 X 1 and k 3 X 3 squares, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 4, 1, 9, 1, 16, 30, 12, 1, 1, 25, 132, 200, 79, 1, 36, 360, 1232, 1246, 1, 49, 780, 5048, 13211, 11984, 4526, 758, 51, 1, 1, 64, 1470, 15468, 78851, 193672, 234394, 139188, 37760, 3600, 1, 81, 2520, 38972, 324721, 1490562, 3761236, 5052890, 3305328, 807648
Offset: 0

Views

Author

R. J. Mathar, Aug 23 2016

Keywords

Comments

The number of monomers (1 X 1 squares) is n^2 - 9*k.
Row lengths are triplicated A002522.

Examples

			The triangle starts in row n=0 with columns k=0,1,...:
  1;
  1;
  1;
  1,  1;
  1,  4;
  1,  9;
  1, 16,  30,   12,     1;
  1, 25, 132,  200,    79;
  1, 36, 360, 1232,  1246;
  1, 49, 780, 5048, 13211, 11984, 4526, 758, 51, 1;
		

Crossrefs

Cf. A002522, A140304 (row sums), A193580 (1 X 1 and 2 X 2 squares).

Programs

  • Maple
    b:= proc(n, l) option remember; local k, m; m:=min(l[]);
          if n<3 then 1
        elif m>0 then b(n-m, map(x->x-m, l))
        else for k while l[k]>0 do od; b(n, subsop(k=1, l))+
             expand(`if`(k+1 (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$n])):
    seq(T(n), n=0..12);  # Alois P. Heinz, Sep 27 2016
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{ k, m}, m = Min[l]; Which[n < 3, 1, m > 0, b[n - m, l - m],  True, k = 1; While[l[[k]] > 0, k++]; b[n, ReplacePart[ l, k -> 1]] + Expand[If[k + 1 < Length[l] && l[[k+1 ;; k+2]] == {0, 0}, b[n, ReplacePart[l, {k -> 3, k+1 -> 3, k+2 -> 3}]]*x, 0]]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]} ] ][b[n, Table[0, n]]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 10 2017, after Alois P. Heinz *)

Formula

T(n,0) = 1.
T(n,1) = (n-2)^2, n >= 2.
From Alois P. Heinz, Sep 27 2016: (Start)
T(n,2) = (n-3)*(n-4)*(n-5)*(n+4)/2 for n > 2.
T(n,3) = (n^6 - 12*n^5 - 15*n^4 + 620*n^3 - 1234*n^2 - 7616*n + 22368)/6 for n > 5. (End)

A288956 Number of maximal independent vertex sets (and minimal vertex covers) in the n X n king graph.

Original entry on oeis.org

1, 4, 8, 79, 544, 8197, 201611, 6214593, 391918650, 32239887128, 4599025630995, 1018245217588836, 346578151637999287, 193445218205732588935, 165199496607694525364163, 226636538088997406396236072, 488063150616514603623041818756, 1655950305544572458601638523072809
Offset: 1

Views

Author

Eric W. Weisstein, Jun 20 2017

Keywords

Crossrefs

Main diagonal of A332347.
Cf. A197048 (grid graph), A063443 (independent sets), A193580, A133791 (dominating sets).

Extensions

a(9)-a(18) from Andrew Howroyd, Jun 26 2017
Previous Showing 11-12 of 12 results.