A193897 Triangular array: the self-fusion of (p(n,x)), where p(n,x)=sum{(k+1)*x^k : 0<=k<=n}.
1, 2, 1, 3, 6, 3, 4, 9, 12, 6, 5, 12, 18, 20, 10, 6, 15, 24, 30, 30, 15, 7, 18, 30, 40, 45, 42, 21, 8, 21, 36, 50, 60, 63, 56, 28, 9, 24, 42, 60, 75, 84, 84, 72, 36, 10, 27, 48, 70, 90, 105, 112, 108, 90, 45, 11, 30, 54, 80, 105, 126, 140, 144, 135, 110, 55, 12, 33
Offset: 0
Examples
First six rows of A193897: 1 2...1 3...6....3 4...9....12...6 5...12...18...20...10 6...15...24...30...30...15
Programs
-
Mathematica
z = 12; p[n_, x_] := (n + 1)*x^n + p[n - 1, x] (* #7 *); p[0, x_] := 1; q[n_, x_] := p[n, x]; t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193897 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* A193898 *)
Comments