cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A325197 Heinz numbers of integer partitions such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is 2.

Original entry on oeis.org

5, 8, 14, 21, 24, 25, 27, 28, 35, 36, 40, 54, 56, 66, 98, 99, 110, 120, 125, 132, 135, 147, 154, 165, 168, 175, 180, 189, 196, 198, 200, 220, 225, 231, 245, 250, 252, 264, 270, 275, 280, 297, 300, 308, 375, 378, 385, 390, 392, 396, 440, 450, 500, 546, 585, 594
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Comments

The enumeration of these partitions by sum is given by A325199.

Examples

			The sequence of terms together with their prime indices begins:
    5: {3}
    8: {1,1,1}
   14: {1,4}
   21: {2,4}
   24: {1,1,1,2}
   25: {3,3}
   27: {2,2,2}
   28: {1,1,4}
   35: {3,4}
   36: {1,1,2,2}
   40: {1,1,1,3}
   54: {1,2,2,2}
   56: {1,1,1,4}
   66: {1,2,5}
   98: {1,4,4}
   99: {2,2,5}
  110: {1,3,5}
  120: {1,1,1,2,3}
  125: {3,3,3}
  132: {1,1,2,5}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Select[Range[1000],otbmax[primeptn[#]]-otb[primeptn[#]]==2&]

A325198 Positive numbers whose maximum prime index minus minimum prime index is 2.

Original entry on oeis.org

10, 20, 21, 30, 40, 50, 55, 60, 63, 80, 90, 91, 100, 105, 120, 147, 150, 160, 180, 187, 189, 200, 240, 247, 250, 270, 275, 300, 315, 320, 360, 385, 391, 400, 441, 450, 480, 500, 525, 540, 551, 567, 600, 605, 637, 640, 713, 720, 735, 750, 800, 810, 900, 945
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Comments

Also Heinz numbers of integer partitions whose maximum minus minimum part is 2 (counted by A008805). The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   10: {1,3}
   20: {1,1,3}
   21: {2,4}
   30: {1,2,3}
   40: {1,1,1,3}
   50: {1,3,3}
   55: {3,5}
   60: {1,1,2,3}
   63: {2,2,4}
   80: {1,1,1,1,3}
   90: {1,2,2,3}
   91: {4,6}
  100: {1,1,3,3}
  105: {2,3,4}
  120: {1,1,1,2,3}
  147: {2,4,4}
  150: {1,2,3,3}
  160: {1,1,1,1,1,3}
  180: {1,1,2,2,3}
  187: {5,7}
		

Crossrefs

Programs

  • Maple
    N:= 1000: # for terms <= N
    q:= 2: r:= 3:
    Res:= NULL:
    do
      p:= q; q:= r; r:= nextprime(r);
      if p*r > N then break fi;
      for i from 1 do
        pi:= p^i;
        if pi*r > N then break fi;
        for j from 0 do
          piqj:= pi*q^j;
          if piqj*r > N then break fi;
          Res:= Res, seq(piqj*r^k,k=1 .. floor(log[r](N/piqj)))
        od
      od
    od:
    sort([Res]); # Robert Israel, Apr 12 2019
  • Mathematica
    Select[Range[100],PrimePi[FactorInteger[#][[-1,1]]]-PrimePi[FactorInteger[#][[1,1]]]==2&]

A307682 Products of four primes, two of which are distinct.

Original entry on oeis.org

24, 36, 40, 54, 56, 88, 100, 104, 135, 136, 152, 184, 189, 196, 225, 232, 248, 250, 296, 297, 328, 344, 351, 375, 376, 424, 441, 459, 472, 484, 488, 513, 536, 568, 584, 621, 632, 664, 676, 686, 712, 776, 783, 808, 824, 837, 856, 872, 875, 904, 999, 1016, 1029
Offset: 1

Views

Author

Kalle Siukola, Apr 21 2019

Keywords

Comments

Numbers with exactly four prime factors (counted with multiplicity) and exactly two distinct prime factors.
Numbers n such that bigomega(n) = 4 and omega(n) = 2.
Products of a prime and the cube of a different prime (pq^3) together with squares of squarefree semiprimes (p^2*q^2).

Crossrefs

Union of A065036 and A085986.
Intersection of A007774 and A067801.
Intersection of A007774 and A195086.
Intersection of A014613 and A067801.
Intersection of A014613 and A195086.
Cf. A307342.

Programs

  • Mathematica
    Select[Range@ 1050, And[PrimeNu@ # == 2, PrimeOmega@ # == 4] &] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    isok(n) = (bigomega(n) == 4) && (omega(n) == 2); \\ Michel Marcus, Apr 22 2019
  • Python
    import sympy
    def bigomega(n): return sympy.primeomega(n)
    def omega(n): return len(sympy.primefactors(n))
    print([n for n in range(1, 1000) if bigomega(n) == 4 and omega(n) == 2])
    
Previous Showing 11-13 of 13 results.