cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A198589 Odd numbers producing 6 odd numbers in the Collatz iteration.

Original entry on oeis.org

7, 15, 29, 61, 117, 241, 245, 267, 469, 483, 497, 535, 537, 965, 981, 985, 995, 1069, 1073, 1075, 1877, 1933, 1969, 1971, 1989, 2009, 2141, 2147, 2149, 3861, 3925, 3939, 3941, 3981, 4017, 4019, 4043, 4277, 4293, 4297, 4301, 7509, 7733, 7877, 7885, 7957, 8035
Offset: 1

Views

Author

T. D. Noe, Oct 31 2011

Keywords

Crossrefs

Cf. A198584.

Programs

  • Mathematica
    Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; t = {}; Do[If[Length[Select[Collatz[n], OddQ]] == 6, AppendTo[t, n]], {n, 1, 10000, 2}]; t

A198590 Odd numbers producing 7 odd numbers in the Collatz iteration.

Original entry on oeis.org

9, 19, 37, 77, 81, 149, 163, 309, 321, 325, 331, 597, 625, 643, 653, 663, 713, 715, 1237, 1251, 1285, 1301, 1313, 1325, 1339, 1425, 1427, 1431, 1433, 2389, 2501, 2573, 2577, 2613, 2625, 2627, 2653, 2679, 2695, 2851, 2853, 2861, 2865, 2867, 4949, 5005, 5141
Offset: 1

Views

Author

T. D. Noe, Oct 31 2011

Keywords

Crossrefs

Cf. A198584.

Programs

  • Mathematica
    Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; t = {}; Do[If[Length[Select[Collatz[n], OddQ]] == 7, AppendTo[t, n]], {n, 1, 10000, 2}]; t
    col7Q[n_]:=Length[Select[NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&],OddQ]]==7; Select[ Range[1,5201,2],col7Q] (* Harvey P. Dale, Sep 25 2023 *)

A198591 Odd numbers producing 8 odd numbers in the Collatz iteration.

Original entry on oeis.org

25, 49, 51, 99, 101, 197, 205, 217, 397, 405, 433, 435, 441, 475, 789, 821, 833, 857, 867, 869, 875, 883, 951, 953, 955, 1589, 1621, 1649, 1667, 1713, 1715, 1733, 1741, 1751, 1765, 1785, 1901, 1907, 1911, 3157, 3185, 3285, 3299, 3333, 3427, 3429, 3469, 3477
Offset: 1

Views

Author

T. D. Noe, Oct 31 2011

Keywords

Crossrefs

Cf. A198584.

Programs

  • Mathematica
    Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; t = {}; Do[If[Length[Select[Collatz[n], OddQ]] == 8, AppendTo[t, n]], {n, 1, 10000, 2}]; t

A198592 Odd numbers producing 9 odd numbers in the Collatz iteration.

Original entry on oeis.org

33, 65, 67, 131, 133, 261, 269, 273, 289, 525, 529, 533, 547, 555, 571, 577, 579, 583, 633, 635, 1045, 1059, 1077, 1093, 1099, 1111, 1143, 1155, 1157, 1167, 1177, 1267, 1271, 1273, 2101, 2117, 2123, 2133, 2161, 2189, 2199, 2221, 2285, 2309, 2317, 2321, 2333
Offset: 1

Views

Author

T. D. Noe, Oct 31 2011

Keywords

Crossrefs

Cf. A198584.

Programs

A342815 Numbers of the form (2^(2*j + 6*k + 5) - 2^(2*j + 1) - 3)/9, with j,k >= 0.

Original entry on oeis.org

3, 13, 53, 213, 227, 853, 909, 3413, 3637, 13653, 14549, 14563, 54613, 58197, 58253, 218453, 232789, 233013, 873813, 931157, 932053, 932067, 3495253, 3724629, 3728213, 3728269, 13981013, 14898517, 14912853, 14913077, 55924053, 59594069, 59651413, 59652309
Offset: 1

Views

Author

Satya Das, Mar 22 2021

Keywords

Comments

Sequence is a subsequence of A198584. When any term is iterated using the Collatz function, the last odd integer in the trajectory before 1 is of the form (4^(3*m + 2) - 1)/3.

Crossrefs

Union with A342816 gives A198584.

Programs

  • Mathematica
    Take[Sort[Flatten[Table[(2^(2n1+6n2+5) - 2^(2n1+1) - 3)/9, {n1, 0, 20}, {n2, 0, 20}]]], 50]
  • Python
    seq=[]
    for n1 in range(20):
        for n2 in range(20):
            n=(2**(2*n1+6*n2+5) - 2**(2*n1+1) - 3)/9
            seq.append(n)
    seq.sort()
    print(seq[0:50])

A342816 Numbers of the form (2^(2*j + 6*k + 10) - 2^(2*j + 2) - 3)/9, with j,k >= 0.

Original entry on oeis.org

113, 453, 1813, 7253, 7281, 29013, 29125, 116053, 116501, 464213, 466005, 466033, 1856853, 1864021, 1864133, 7427413, 7456085, 7456533, 29709653, 29824341, 29826133, 29826161, 118838613, 119297365, 119304533, 119304645, 475354453, 477189461, 477218133
Offset: 1

Views

Author

Satya Das, Mar 22 2021

Keywords

Comments

Sequence is a subsequence of A198584. When any term is iterated using the Collatz function, the last odd integer in the trajectory before 1 is of the form (4^(3*m + 4) - 1)/3.

Crossrefs

Union with A342815 gives A198584.

Programs

  • Mathematica
    Take[Sort[Flatten[Table[(2^(2n1+6n2+10) - 2^(2n1+2) - 3)/9, {n1, 0, 20}, {n2, 0, 20}]]], 50]
  • Python
    seq=[]
    for n1 in range(20):
        for n2 in range(20):
            n=(2**(2*n1+6*n2+10) - 2**(2*n1+2) - 3)/9
            seq.append(n)
    seq.sort()
    print(seq[0:50])

A353957 a(n) = (85*4^n - 1)/3.

Original entry on oeis.org

113, 453, 1813, 7253, 29013, 116053, 464213, 1856853, 7427413, 29709653, 118838613, 475354453, 1901417813, 7605671253, 30422685013, 121690740053, 486762960213, 1947051840853, 7788207363413, 31152829453653, 124611317814613, 498445271258453, 1993781085033813
Offset: 1

Views

Author

Krishna Kumar Arumugam, Sep 03 2022

Keywords

Comments

When any term in the sequence is iterated using the Collatz function, its trajectory's only odd number before reaching 1 will be 85.
Also, each term would have 2n+10 steps as its stopping time (A006577).

Examples

			When n=5, a(5) = 29013 and when iterated using the Collatz function will have the following trajectory: 87040,43520,21760,10880,5440,2720,1360,680,340,170,85,256,128,64,32,16,8,4,2,1
		

Crossrefs

Subsequence of A198584.
Cf. A006577.

Programs

Extensions

Simpler definition and more terms from Jon E. Schoenfield, Sep 09 2022
Previous Showing 11-17 of 17 results.