cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 56 results. Next

A199081 Decimal expansion of x > 0 satisfying x^2 + 2*sin(x) = 1.

Original entry on oeis.org

4, 2, 3, 0, 2, 8, 1, 8, 1, 8, 8, 5, 1, 6, 0, 4, 2, 8, 8, 5, 1, 2, 9, 3, 3, 2, 4, 7, 3, 2, 6, 0, 7, 1, 8, 9, 5, 7, 2, 6, 9, 9, 8, 1, 0, 8, 4, 9, 1, 9, 9, 6, 0, 1, 7, 7, 7, 0, 2, 2, 5, 5, 3, 1, 6, 0, 9, 3, 4, 1, 1, 9, 8, 1, 1, 0, 6, 1, 3, 3, 0, 2, 6, 6, 3, 3, 0, 5, 4, 9, 3, 8, 0, 7, 7, 9, 9, 7, 2, 1, 8
Offset: 0

Views

Author

Clark Kimberling, Nov 02 2011

Keywords

Comments

See A198866 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.7251712054289301271344240020632...
positive:  0.42302818188516042885129332473260...
		

Crossrefs

Programs

  • Mathematica
    a = 1; b = 2; c = 1;
    f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.8, -1.7}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199080 *)
    r = x /. FindRoot[f[x] == g[x], {x, .42, .43}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199081 *)
  • PARI
    a=1; b=2; c=1; solve(x=0, 1, a*x^2 + b*sin(x) - c) \\ G. C. Greubel, Feb 20 2019
    
  • Sage
    a=1; b=2; c=1; (a*x^2 + b*sin(x)==c).find_root(0,1,x) # G. C. Greubel, Feb 20 2019

Extensions

Terms a(83) onward corrected by G. C. Greubel, Feb 20 2019

A199082 Decimal expansion of x < 0 satisfying x^2 + 2*sin(x) = 2.

Original entry on oeis.org

1, 9, 6, 1, 8, 8, 4, 2, 4, 6, 4, 1, 0, 8, 3, 4, 8, 9, 3, 4, 1, 9, 2, 8, 0, 7, 7, 9, 7, 7, 4, 8, 9, 4, 2, 6, 8, 2, 5, 7, 4, 7, 1, 2, 0, 7, 1, 2, 7, 2, 1, 8, 6, 6, 5, 5, 2, 0, 8, 9, 8, 6, 8, 6, 9, 2, 3, 2, 5, 8, 8, 5, 0, 6, 8, 5, 9, 0, 3, 7, 8, 4, 0, 1, 3, 8, 9, 0, 9, 6, 5, 8, 4, 8, 8, 1, 9, 0, 4
Offset: 1

Views

Author

Clark Kimberling, Nov 02 2011

Keywords

Comments

See A198866 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.96188424641083489341928077977489...
positive:  0.77498081442304344595859350247040...
		

Crossrefs

Programs

  • Mathematica
    a = 1; b = 2; c = 2;
    f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.97, -1.96}, WorkingPrecision -> 110]
    RealDigits[r](* A199082 *)
    r = x /. FindRoot[f[x] == g[x], {x, .77, .78}, WorkingPrecision -> 110]
    RealDigits[r](* A199083 *)
  • PARI
    a=1; b=2; c=2; solve(x=-2, 0, a*x^2 + b*sin(x) - c) \\ G. C. Greubel, Feb 20 2019
    
  • Sage
    a=1; b=2; c=2; (a*x^2 + b*sin(x)==c).find_root(-2,0,x) # G. C. Greubel, Feb 20 2019

A199083 Decimal expansion of x>0 satisfying x^2 + 2*sin(x) = 2.

Original entry on oeis.org

7, 7, 4, 9, 8, 0, 8, 1, 4, 4, 2, 3, 0, 4, 3, 4, 4, 5, 9, 5, 8, 5, 9, 3, 5, 0, 2, 4, 7, 0, 4, 0, 1, 9, 1, 4, 6, 7, 6, 9, 3, 8, 6, 6, 1, 8, 5, 6, 1, 6, 3, 3, 1, 0, 6, 1, 5, 5, 2, 5, 6, 6, 3, 6, 2, 3, 7, 4, 2, 3, 1, 3, 5, 3, 1, 4, 1, 1, 7, 5, 2, 0, 4, 7, 9, 4, 0, 9, 8, 0, 5, 2, 1, 4, 2, 2, 7, 5, 4, 2, 6
Offset: 0

Views

Author

Clark Kimberling, Nov 02 2011

Keywords

Comments

See A198866 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.96188424641083489341928077977489...
positive:  0.774980814423043445958593502470401...
		

Crossrefs

Programs

  • Mathematica
    a = 1; b = 2; c = 2;
    f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x/.FindRoot[f[x] == g[x], {x, -1.97, -1.96}, WorkingPrecision -> 110]
    RealDigits[r](* A199082 *)
    r = x/.FindRoot[f[x] == g[x], {x, .77, .78}, WorkingPrecision -> 110]
    RealDigits[r](* This sequence *)
  • PARI
    a=1; b=2; c=2; solve(x=0, 1, a*x^2 + b*sin(x) - c) \\ G. C. Greubel, Feb 20 2019
    
  • Sage
    a=1; b=2; c=2; (a*x^2 + b*sin(x)==c).find_root(0,1,x) # G. C. Greubel, Feb 20 2019

Extensions

Terms a(90) onward corrected by G. C. Greubel, Feb 20 2019

A199150 Decimal expansion of x<0 satisfying 3*x^2+sin(x)=3.

Original entry on oeis.org

1, 1, 4, 1, 5, 2, 9, 8, 6, 4, 6, 4, 2, 3, 9, 2, 5, 6, 2, 7, 0, 7, 5, 0, 6, 6, 0, 5, 6, 2, 9, 4, 8, 6, 7, 7, 8, 4, 6, 7, 2, 7, 2, 6, 6, 3, 6, 4, 1, 5, 7, 9, 5, 5, 0, 7, 5, 8, 6, 1, 6, 9, 7, 2, 5, 6, 0, 8, 6, 3, 1, 1, 9, 6, 7, 3, 5, 7, 4, 4, 7, 8, 8, 7, 7, 9, 0, 4, 6, 9, 5, 4, 3, 7, 2, 5, 7, 8, 4
Offset: 1

Views

Author

Clark Kimberling, Nov 03 2011

Keywords

Comments

See A198866 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.1415298646423925627075066056294867784...
positive:  0.86401127242790345732955031503590029470...
		

Crossrefs

Cf. A198866.

Programs

  • Mathematica
    a = 3; b = 1; c = 3;
    f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199150 *)
    r = x /. FindRoot[f[x] == g[x], {x, .86, .87}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199151 *)

A199151 Decimal expansion of x>0 satisfying 3*x^2+sin(x)=3.

Original entry on oeis.org

8, 6, 4, 0, 1, 1, 2, 7, 2, 4, 2, 7, 9, 0, 3, 4, 5, 7, 3, 2, 9, 5, 5, 0, 3, 1, 5, 0, 3, 5, 9, 0, 0, 2, 9, 4, 7, 0, 4, 8, 8, 0, 1, 7, 2, 7, 8, 9, 4, 2, 0, 3, 8, 5, 2, 7, 5, 0, 0, 7, 7, 8, 3, 4, 3, 8, 2, 4, 2, 2, 0, 4, 0, 1, 2, 5, 9, 8, 3, 2, 0, 0, 5, 6, 4, 3, 1, 1, 8, 0, 0, 8, 8, 7, 4, 2, 1, 7, 8
Offset: 0

Views

Author

Clark Kimberling, Nov 03 2011

Keywords

Comments

See A198866 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.1415298646423925627075066056294867784...
positive:  0.86401127242790345732955031503590029470...
		

Crossrefs

Cf. A198866.

Programs

  • Mathematica
    a = 3; b = 1; c = 3;
    f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199150 *)
    r = x /. FindRoot[f[x] == g[x], {x, .86, .87}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199151 *)

A199152 Decimal expansion of x<0 satisfying 3*x^2+2*sin(x)=1.

Original entry on oeis.org

9, 3, 1, 9, 4, 4, 5, 3, 9, 1, 9, 6, 5, 7, 4, 8, 0, 8, 7, 5, 7, 9, 9, 4, 8, 2, 2, 2, 1, 9, 0, 3, 5, 7, 7, 7, 4, 3, 2, 4, 1, 6, 3, 2, 3, 9, 2, 4, 2, 2, 3, 1, 3, 6, 1, 2, 1, 0, 2, 9, 6, 0, 5, 1, 6, 3, 7, 4, 3, 3, 6, 3, 4, 4, 7, 8, 0, 9, 1, 8, 6, 6, 5, 1, 4, 5, 5, 7, 1, 6, 5, 7, 7, 3, 9, 3, 4, 5, 5
Offset: 0

Views

Author

Clark Kimberling, Nov 03 2011

Keywords

Comments

See A198866 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -0.93194453919657480875799482221903577743...
positive:  0.33648270192335281577039493761106778144...
		

Crossrefs

Cf. A198866.

Programs

  • Mathematica
    a = 3; b = 2; c = 1;
    f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.94, -.93}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199152 *)
    r = x /. FindRoot[f[x] == g[x], {x, .33, .34}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199153 *)

A199153 Decimal expansion of x>0 satisfying 3*x^2+2*sin(x)=1.

Original entry on oeis.org

3, 3, 6, 4, 8, 2, 7, 0, 1, 9, 2, 3, 3, 5, 2, 8, 1, 5, 7, 7, 0, 3, 9, 4, 9, 3, 7, 6, 1, 1, 0, 6, 7, 7, 8, 1, 4, 4, 3, 6, 5, 3, 0, 1, 1, 7, 8, 4, 0, 0, 3, 6, 7, 9, 4, 6, 8, 5, 6, 3, 5, 3, 2, 4, 2, 5, 3, 4, 9, 3, 1, 1, 2, 9, 0, 3, 6, 8, 3, 7, 2, 5, 6, 4, 9, 3, 2, 1, 7, 3, 9, 8, 2, 0, 0, 1, 7, 2, 7
Offset: 0

Views

Author

Clark Kimberling, Nov 03 2011

Keywords

Comments

See A198866 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -0.93194453919657480875799482221903577743...
positive:  0.336482701923352815770394937611067781443...
		

Crossrefs

Cf. A198866.

Programs

  • Mathematica
    a = 3; b = 2; c = 1;
    f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.94, -.93}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199152 *)
    r = x /. FindRoot[f[x] == g[x], {x, .33, .34}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199153 *)

A199154 Decimal expansion of x<0 satisfying 3*x^2+2*sin(x)=2.

Original entry on oeis.org

1, 1, 2, 6, 2, 9, 9, 9, 4, 0, 9, 9, 3, 8, 7, 7, 5, 2, 3, 9, 9, 2, 8, 6, 7, 7, 3, 3, 6, 4, 1, 8, 6, 8, 5, 0, 7, 2, 2, 2, 7, 0, 7, 8, 8, 7, 1, 8, 7, 3, 6, 9, 6, 8, 2, 1, 0, 1, 2, 4, 1, 9, 8, 1, 3, 2, 7, 5, 3, 6, 9, 3, 2, 2, 5, 1, 7, 5, 0, 6, 8, 2, 5, 0, 4, 4, 0, 7, 7, 5, 3, 0, 0, 7, 7, 6, 0, 7, 6
Offset: 1

Views

Author

Clark Kimberling, Nov 03 2011

Keywords

Comments

See A198866 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.126299940993877523992867733641868507222...
positive:  0.559372170813127047765629647326548920708...
		

Crossrefs

Cf. A198866.

Programs

  • Mathematica
    a = 3; b = 2; c = 2;
    f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.13, -1.12}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199154 *)
    r = x /. FindRoot[f[x] == g[x], {x, .55, .56}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199155 *)

A199155 Decimal expansion of x>0 satisfying 3*x^2+2*sin(x)=2.

Original entry on oeis.org

5, 5, 9, 3, 7, 2, 1, 7, 0, 8, 1, 3, 1, 2, 7, 0, 4, 7, 7, 6, 5, 6, 2, 9, 6, 4, 7, 3, 2, 6, 5, 4, 8, 9, 2, 0, 7, 0, 8, 1, 5, 6, 2, 5, 3, 5, 4, 4, 2, 3, 2, 2, 2, 9, 8, 4, 0, 6, 5, 6, 7, 2, 9, 4, 5, 4, 1, 6, 4, 0, 8, 0, 2, 8, 3, 7, 1, 8, 3, 6, 5, 6, 4, 6, 9, 0, 6, 8, 6, 3, 4, 4, 1, 5, 1, 6, 0, 7, 2
Offset: 0

Views

Author

Clark Kimberling, Nov 03 2011

Keywords

Comments

See A198866 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.126299940993877523992867733641868507222...
positive:  0.559372170813127047765629647326548920708...
		

Crossrefs

Cf. A198866.

Programs

  • Mathematica
    a = 3; b = 2; c = 2;
    f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.13, -1.12}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199154 *)
    r = x /. FindRoot[f[x] == g[x], {x, .55, .56}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199155 *)

A199156 Decimal expansion of x < 0 satisfying 3*x^2+2*sin(x) = 3.

Original entry on oeis.org

1, 2, 8, 0, 1, 1, 7, 0, 2, 7, 8, 2, 3, 5, 9, 2, 9, 0, 0, 0, 4, 5, 6, 8, 9, 8, 4, 5, 5, 5, 8, 5, 5, 4, 9, 7, 9, 6, 5, 5, 2, 8, 2, 3, 5, 3, 6, 5, 3, 4, 8, 6, 3, 0, 8, 5, 6, 7, 7, 8, 2, 6, 9, 0, 0, 8, 4, 7, 4, 8, 3, 3, 1, 9, 7, 1, 7, 6, 9, 0, 6, 9, 7, 1, 8, 5, 9, 5, 0, 8, 4, 8, 2, 6, 2, 9, 7, 7, 4, 8, 9, 7
Offset: 1

Views

Author

Clark Kimberling, Nov 03 2011

Keywords

Comments

See A198866 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			negative: -1.280117027823592900045689845558554979655...
positive:  0.741456706769858920159460956349108949987...
		

Crossrefs

Cf. A198866.

Programs

  • Mathematica
    a = 3; b = 2; c = 3;
    f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.29, -1.28}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199156 *)
    r = x /. FindRoot[f[x] == g[x], {x, .74, .75}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199157 *)

Extensions

a(93) onwards corrected by Georg Fischer, Aug 01 2021
Previous Showing 41-50 of 56 results. Next