cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 98 results. Next

A199612 Decimal expansion of greatest x satisfying x + 4*cos(x) = 0.

Original entry on oeis.org

3, 5, 9, 5, 3, 0, 4, 8, 6, 7, 1, 6, 1, 5, 4, 7, 9, 9, 1, 8, 7, 7, 6, 0, 6, 9, 3, 5, 0, 8, 3, 4, 1, 8, 7, 1, 4, 9, 1, 3, 1, 1, 1, 4, 3, 7, 7, 7, 5, 5, 2, 9, 3, 2, 5, 1, 8, 5, 5, 2, 2, 4, 8, 6, 9, 1, 2, 8, 2, 5, 3, 0, 1, 8, 4, 3, 4, 6, 3, 7, 8, 9, 3, 9, 0, 9, 9, 1, 7, 5, 8, 2, 7, 7, 2, 2, 7, 7, 3
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least: -1.25235323400258876318632812197538043590128...
greatest:  3.595304867161547991877606935083418714913111...
		

Crossrefs

Programs

  • Mathematica
    a = 1; b = 4; c = 0;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2, 4}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.3, -1.2}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199611, least of 4 roots *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.5, 3.6}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199612, greatest of 4 roots *)

Extensions

a(86) onwards corrected by Georg Fischer, Aug 03 2021

A199613 Decimal expansion of least x satisfying x^2+4*x*cos(x)=sin(x) (negated).

Original entry on oeis.org

1, 0, 7, 7, 3, 0, 9, 9, 1, 7, 5, 2, 4, 0, 7, 2, 0, 3, 0, 3, 3, 9, 9, 7, 9, 6, 1, 5, 1, 2, 6, 8, 1, 3, 6, 6, 4, 7, 9, 1, 6, 5, 3, 9, 9, 5, 8, 3, 8, 5, 8, 7, 9, 3, 4, 0, 9, 3, 3, 1, 5, 0, 2, 2, 5, 4, 2, 0, 7, 7, 4, 2, 2, 3, 3, 2, 4, 7, 1, 0, 7, 3, 0, 2, 3, 3, 9, 5, 0, 3, 9, 8, 7, 4, 5, 2, 2, 8, 9
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least: -1.077309917524072030339979615126813664791...
greatest: 3.553241680682892523957265556234494902067...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 1; b = 4; c = 1;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2, 4}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.1, -1.0}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199613, least of 4 roots *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.5, 3.6}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199614, greatest of 4 roots *)
  • PARI
    solve(x=-2, -1, x^2+4*x*cos(x)-sin(x)) \\ Iain Fox, Nov 22 2017

A199614 Decimal expansion of greatest x satisfying x^2+4*x*cos(x)=sin(x).

Original entry on oeis.org

3, 5, 5, 3, 2, 4, 1, 6, 8, 0, 6, 8, 2, 8, 9, 2, 5, 2, 3, 9, 5, 7, 2, 6, 5, 5, 5, 6, 2, 3, 4, 4, 9, 4, 9, 0, 2, 0, 6, 7, 7, 6, 2, 6, 1, 8, 6, 1, 7, 2, 3, 9, 1, 5, 4, 2, 8, 6, 0, 0, 4, 2, 8, 8, 8, 6, 6, 0, 4, 0, 7, 4, 9, 0, 2, 5, 6, 2, 7, 1, 6, 0, 1, 8, 7, 4, 7, 3, 5, 7, 2, 1, 8, 0, 8, 2, 6, 7, 7
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least: -1.077309917524072030339979615126813664791...
greatest:  3.553241680682892523957265556234494902...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 1; b = 4; c = 1;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2, 4}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.1, -1.0}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199613, least of 4 roots *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.5, 3.6}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199614, greatest of 4 roots *)

A199615 Decimal expansion of least x satisfying x^2 + 4*x*cos(x) = 2*sin(x).

Original entry on oeis.org

8, 5, 6, 3, 7, 4, 0, 4, 9, 7, 4, 4, 3, 4, 6, 1, 0, 9, 3, 2, 2, 0, 7, 8, 0, 6, 2, 5, 6, 4, 7, 2, 9, 1, 9, 9, 4, 7, 6, 6, 0, 0, 5, 0, 8, 8, 7, 5, 4, 8, 2, 4, 0, 9, 4, 3, 3, 1, 0, 1, 4, 8, 8, 7, 0, 6, 8, 7, 1, 6, 7, 3, 4, 6, 5, 9, 9, 3, 0, 2, 8, 3, 6, 5, 7, 7, 2, 0, 9, 8, 7, 5, 0, 6, 7, 2, 7, 4, 5
Offset: 0

Views

Author

Clark Kimberling, Nov 08 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least: -0.856374049744346109322078062564729199476600...
greatest:  3.515613199687358023842180210704030792217...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 1; b = 4; c = 2;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2, 4}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.86, -.85}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199615, least of 4 roots *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.5, 3.6}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199616, greatest of 4 roots *)

Extensions

a(96) onwards corrected by Georg Fischer, Aug 03 2021

A199616 Decimal expansion of greatest x satisfying x^2+4*x*cos(x)=2*sin(x).

Original entry on oeis.org

3, 5, 1, 5, 6, 1, 3, 1, 9, 9, 6, 8, 7, 3, 5, 8, 0, 2, 3, 8, 4, 2, 1, 8, 0, 2, 1, 0, 7, 0, 4, 0, 3, 0, 7, 9, 2, 2, 1, 7, 8, 8, 8, 8, 6, 7, 9, 8, 1, 9, 3, 3, 5, 0, 7, 3, 8, 3, 3, 3, 5, 6, 9, 7, 8, 4, 4, 2, 4, 3, 4, 5, 9, 1, 6, 5, 7, 2, 6, 4, 8, 5, 7, 2, 3, 9, 2, 0, 0, 0, 7, 5, 7, 6, 0, 2, 3, 4, 1
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least: -0.856374049744346109322078062564729199476600...
greatest:  3.515613199687358023842180210704030792217...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 1; b = 4; c = 2;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2, 4}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.86, -.85}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199615, least of 4 roots *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.5, 3.6}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199616, greatest of 4 roots *)

A199617 Decimal expansion of least x satisfying x^2+4*x*cos(x)=3*sin(x).

Original entry on oeis.org

5, 5, 3, 5, 4, 3, 3, 8, 1, 7, 8, 6, 0, 3, 3, 6, 2, 8, 7, 0, 2, 0, 3, 4, 4, 9, 0, 5, 9, 1, 1, 8, 1, 6, 9, 3, 0, 4, 0, 6, 3, 2, 5, 8, 0, 1, 1, 9, 4, 8, 5, 5, 2, 5, 1, 2, 7, 6, 2, 5, 4, 7, 5, 2, 7, 1, 3, 8, 3, 1, 4, 4, 4, 4, 6, 9, 3, 7, 3, 9, 8, 3, 1, 0, 6, 3, 4, 6, 4, 5, 4, 9, 0, 8, 8, 0, 0, 8, 6
Offset: 0

Views

Author

Clark Kimberling, Nov 08 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least: -0.5535433817860336287020344905911816930...
greatest:  3.4822676247861932090867036675576803...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 1; b = 4; c = 3;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2, 4}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.56, -.55}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199617, least of 4 roots *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.4, 3.5}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199618, greatest of 4 roots *)

A199618 Decimal expansion of greatest x satisfying x^2+4*x*cos(x)=3*sin(x).

Original entry on oeis.org

3, 4, 8, 2, 2, 6, 7, 6, 2, 4, 7, 8, 6, 1, 9, 3, 2, 0, 9, 0, 8, 6, 7, 0, 3, 6, 6, 7, 5, 5, 7, 6, 8, 0, 3, 7, 0, 7, 6, 2, 6, 9, 3, 1, 5, 6, 9, 4, 5, 6, 0, 3, 6, 9, 3, 8, 3, 9, 7, 6, 9, 9, 3, 4, 9, 0, 0, 4, 8, 4, 2, 1, 8, 7, 6, 3, 9, 8, 5, 1, 0, 8, 3, 9, 9, 3, 9, 4, 9, 6, 8, 6, 4, 8, 5, 8, 9, 5, 7
Offset: 0

Views

Author

Clark Kimberling, Nov 08 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least: -0.5535433817860336287020344905911816930...
greatest:  3.4822676247861932090867036675576803...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 1; b = 4; c = 3;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2, 4}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.56, -.55}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199617, least of 4 roots *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.4, 3.5}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199618, greatest of 4 roots *)

A199619 Decimal expansion of least x>0 satisfying x^2+4*x*cos(x)=4*sin(x).

Original entry on oeis.org

8, 0, 0, 0, 5, 3, 3, 4, 2, 6, 2, 7, 4, 1, 5, 7, 5, 9, 3, 6, 8, 5, 9, 0, 2, 7, 9, 9, 0, 8, 9, 3, 3, 2, 1, 9, 6, 3, 2, 4, 4, 6, 5, 3, 4, 4, 8, 6, 4, 6, 6, 6, 1, 1, 0, 4, 6, 2, 1, 6, 6, 9, 1, 9, 5, 3, 4, 1, 3, 1, 1, 0, 2, 7, 7, 5, 0, 4, 3, 4, 1, 5, 9, 6, 8, 4, 1, 0, 1, 2, 2, 2, 9, 0, 1, 5, 2, 7, 6
Offset: 0

Views

Author

Clark Kimberling, Nov 08 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least: 0.80005334262741575936859027990893321963...
greatest:  3.4528998885329277803363008378649838...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 1; b = 4; c = 4;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -.5, 4}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .8, .81}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199619, least pos root *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.4, 3.5}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199620, greatest of 3 roots *)

A199620 Decimal expansion of greatest x satisfying x^2+4*x*cos(x)=4*sin(x).

Original entry on oeis.org

3, 4, 5, 2, 8, 9, 9, 8, 8, 8, 5, 3, 2, 9, 2, 7, 7, 8, 0, 3, 3, 6, 3, 0, 0, 8, 3, 7, 8, 6, 4, 9, 8, 3, 8, 8, 4, 0, 8, 8, 3, 6, 8, 5, 5, 6, 5, 7, 8, 5, 1, 5, 3, 8, 6, 4, 0, 5, 6, 2, 7, 2, 9, 0, 9, 5, 5, 1, 8, 5, 6, 4, 0, 8, 5, 9, 2, 4, 4, 5, 4, 6, 8, 3, 0, 5, 7, 0, 2, 5, 8, 4, 9, 8, 6, 0, 9, 6, 0
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least: 0.80005334262741575936859027990893321963...
greatest:  3.4528998885329277803363008378649838...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 1; b = 4; c = 4;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -.5, 4}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .8, .81}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199619, least pos root *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.4, 3.5}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199620, greatest of 3 roots *)

A199661 Decimal expansion of x>0 satisfying 2*x^2+2*x*cos(x)=3*sin(x).

Original entry on oeis.org

5, 8, 1, 1, 4, 8, 2, 2, 7, 2, 0, 3, 4, 1, 2, 1, 1, 1, 9, 8, 6, 7, 9, 7, 6, 7, 4, 6, 2, 0, 6, 4, 9, 6, 4, 4, 1, 8, 5, 6, 1, 6, 2, 0, 1, 6, 1, 1, 7, 0, 7, 3, 7, 6, 2, 0, 1, 5, 4, 7, 9, 9, 6, 6, 0, 2, 2, 5, 9, 3, 2, 1, 8, 0, 0, 7, 7, 5, 4, 2, 9, 9, 7, 1, 8, 6, 2, 4, 3, 7, 4, 6, 6, 1, 7, 1, 7, 6, 0
Offset: 0

Views

Author

Clark Kimberling, Nov 09 2011

Keywords

Comments

See A199597 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.5811482272034121119867976746206496441856...
		

Crossrefs

Cf. A199597.

Programs

  • Mathematica
    a = 2; b = 2; c = 3;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .58, .59}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199661 *)
Previous Showing 11-20 of 98 results. Next