cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A199597 Decimal expansion of x > 0 satisfying x^2 + x*cos(x) = sin(x).

Original entry on oeis.org

1, 1, 8, 8, 1, 8, 5, 1, 3, 4, 4, 5, 1, 4, 3, 8, 8, 0, 3, 2, 1, 7, 8, 1, 0, 9, 7, 2, 9, 0, 7, 6, 5, 2, 5, 9, 7, 3, 8, 3, 2, 4, 2, 5, 6, 1, 2, 8, 4, 1, 4, 7, 1, 9, 4, 1, 8, 2, 3, 9, 5, 2, 8, 3, 2, 3, 4, 1, 8, 6, 0, 9, 9, 1, 3, 4, 2, 2, 9, 6, 0, 3, 4, 2, 6, 1, 8, 0, 9, 6, 9, 1, 8, 3, 4, 8, 8, 4, 3, 0
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2011

Keywords

Comments

For many choices of a,b,c, there is exactly one x>0 satisfying a*x^2+b*x*cos(x)=c*sin(x).
Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c.... x
1.... 1.... 2.... A199597
1.... 1.... 3.... A199598
1.... 1.... 4.... A199599
1.... 2.... 1.... A199600
1.... 2.... 3.... A199601
1.... 2.... 4.... A199602
1.... 3.... 0.... A199603, A199604
1.... 3.... 1.... A199605, A199606
1.... 3.... 2.... A199607, A199608
1.... 3.... 3.... A199609, A199610
1.... 4.... 0.... A199611, A199612
1.... 4.... 1.... A199613, A199614
1.... 4.... 2.... A199615, A199616
1.... 4.... 3.... A199617, A199618
1.... 4.... 4.... A199619, A199620
2.... 1.... 0.... A199621
2.... 1.... 2.... A199622
2.... 1.... 3.... A199623
2.... 1.... 4.... A199624
2.... 2.... 1.... A199625
2.... 2.... 3.... A199661
3.... 1.... 0.... A199662
3.... 1.... 2.... A199663
3.... 1.... 3.... A199664
3.... 1.... 4.... A199665
3.... 2.... 0.... A199666
3.... 2.... 1.... A199667
3.... 2.... 3.... A199668
3.... 2.... 4.... A199669
1... -1.... 0.... A003957
1... -1.... 1.... A199722
1... -1.... 2.... A199721
1... -1.... 3.... A199720
1... -1.... 4.... A199719
1... -2.... 1.... A199726
1... -2.... 2.... A199725
1... -2.... 3.... A199724
1... -2.... 4.... A199723
1... -3.... 1.... A199730
1... -3.... 2.... A199729
1... -3.... 3.... A199728
1... -3.... 4.... A199727
1... -4.... 1.... A199737. A199738
1... -4.... 2.... A199735, A199736
1... -4.... 3.... A199733, A199734
1... -4.... 4.... A199731. A199732
2... -1.... 1.... A199742
2... -1.... 2.... A199741
2... -1.... 3.... A199740
2... -1.... 4.... A199739
2... -2.... 1.... A199776
2... -2.... 3.... A199775
2... -3.... 1.... A199780
2... -3.... 2.... A199779
2... -3.... 3.... A199778
2... -3.... 4.... A199777
2... -4.... 1.... A199782
2... -4.... 3.... A199781
3... -4.... 1.... A199786
3... -4.... 2.... A199785
3... -4.... 3.... A199784
3... -4.... 4.... A199783
3... -3.... 1.... A199789
3... -3.... 2.... A199788
3... -3.... 4.... A199787
3... -2.... 1.... A199793
3... -2.... 2.... A199792
3... -2.... 3.... A199791
3... -2.... 4.... A199790
3... -1.... 1.... A199797
3... -1.... 2.... A199796
3... -1.... 3.... A199795
3... -1.... 4.... A199794
4... -4.... 1.... A199873
4... -4.... 3.... A199872
4... -3.... 1.... A199871
4... -3.... 2.... A199870
4... -3.... 3.... A199869
4... -3.... 4.... A199868
4... -2.... 1.... A199867
4... -2.... 3.... A199866
4... -1.... 1.... A199865
4... -1.... 2.... A199864
4... -1.... 3.... A199863
4... -1.... 4.... A199862
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A199597, take f(x,u,v)=x^2+u*x*cos(x)-v*sin(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			1.1881851344514388032178109729076525973...
		

Crossrefs

Programs

  • Mathematica
    (* Program 1:  A199597 *)
    a = 1; b = 1; c = 2;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.18, 1.19}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199597 *)
    (* Program 2: impl. surf. x^2+u*x*cos(x)=v*sin(x) *)
    f[{x_, u_, v_}] := x^2 + u*x*Cos[x] - v*Sin[x];
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, .5, 3}]}, {u, 0, 2}, {v, u, 20}];
    ListPlot3D[Flatten[t, 1]]  (* for A199597 *)

Extensions

Edited by Georg Fischer, Aug 03 2021

A112467 Riordan array ((1-2x)/(1-x), x/(1-x)).

Original entry on oeis.org

1, -1, 1, -1, 0, 1, -1, -1, 1, 1, -1, -2, 0, 2, 1, -1, -3, -2, 2, 3, 1, -1, -4, -5, 0, 5, 4, 1, -1, -5, -9, -5, 5, 9, 5, 1, -1, -6, -14, -14, 0, 14, 14, 6, 1, -1, -7, -20, -28, -14, 14, 28, 20, 7, 1, -1, -8, -27, -48, -42, 0, 42, 48, 27, 8, 1, -1, -9, -35, -75, -90, -42, 42, 90, 75, 35, 9, 1, -1, -10, -44, -110, -165, -132, 0, 132, 165, 110
Offset: 0

Views

Author

Paul Barry, Sep 06 2005

Keywords

Comments

Row sums are A000007. Diagonal sums are -F(n-2). Inverse is A112468. T(2n,n)=0.
(-1,1)-Pascal triangle. - Philippe Deléham, Aug 07 2006
Apart from initial term, same as A008482. - Philippe Deléham, Nov 07 2006
Each column equals the cumulative sum of the previous column. - Mats Granvik, Mar 15 2010
Reading along antidiagonals generates in essence rows of A192174. - Paul Curtz, Oct 02 2011
Triangle T(n,k), read by rows, given by (-1,2,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 01 2011

Examples

			Triangle starts:
    1;
   -1,  1;
   -1,  0,   1;
   -1, -1,   1,   1;
   -1, -2,   0,   2,   1;
   -1, -3,  -2,   2,   3,   1;
   -1, -4,  -5,   0,   5,   4,  1;
   -1, -5,  -9,  -5,   5,   9,  5,  1;
   -1, -6, -14, -14,   0,  14, 14,  6,  1;
   -1, -7, -20, -28, -14,  14, 28, 20,  7,  1;
   -1, -8, -27, -48, -42,   0, 42, 48, 27,  8, 1;
   -1, -9, -35, -75, -90, -42, 42, 90, 75, 35, 9, 1;
  ...
From _Paul Barry_, Apr 08 2011: (Start)
Production matrix begins:
   1,  1,
  -2, -1,  1,
   2,  0, -1,  1,
  -2,  0,  0, -1,  1,
   2,  0,  0,  0, -1,  1,
  -2,  0,  0,  0,  0, -1,  1,
   2,  0,  0,  0,  0,  0, -1,  1
  ... (End)
		

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else (2*k-n)*Binomial(n,k)/n: k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 04 2019
    
  • Maple
    seq(seq( `if`(n=0, 1, (2*k-n)*binomial(n,k)/n), k=0..n), n=0..10); # G. C. Greubel, Dec 04 2019
  • Mathematica
    T[n_, k_]= If[n==0, 1, ((2*k-n)/n)*Binomial[n, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Roger L. Bagula, Feb 16 2009; modified by G. C. Greubel, Dec 04 2019 *)
  • PARI
    T(n, k) = if(n==0, 1, (2*k-n)*binomial(n,k)/n ); \\ G. C. Greubel, Dec 04 2019
    
  • Sage
    def T(n, k):
        if (n==0): return 1
        else: return (2*k-n)*binomial(n,k)/n
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 04 2019

Formula

Number triangle T(n, k) = binomial(n, n-k) - 2*binomial(n-1, n-k-1).
Sum_{k=0..n} T(n, k)*x^k = (x-1)*(x+1)^(n-1). - Philippe Deléham, Oct 03 2005
T(n,k) = ((2*k-n)/n)*binomial(n, k), with T(0,0)=1. - Roger L. Bagula, Feb 16 2009; modified by G. C. Greubel, Dec 04 2019
T(n,k) = T(n-1,k-1) + T(n-1,k) with T(0,0)=1, T(1,0)=-1, T(n,k)=0 for k>n or for n<0. - Philippe Deléham, Nov 01 2011
G.f.: (1-2x)/(1-(1+y)*x). - Philippe Deléham, Dec 15 2011
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A133494(n), A081294(n), A005053(n), A067411(n), A199661(n), A083233(n) for x = 1, 2, 3, 4, 5, 6, 7, respectively. - Philippe Deléham, Dec 15 2011
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(-1 - x + x^2/2! + x^3/3!) = -1 - 2*x - 2*x^2/2! + 5*x^4/4! + 14*x^5/5! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 21 2014
Sum_{k=0..n} T(n,k) = 0^n = A000007(n). - G. C. Greubel, Dec 04 2019
Showing 1-2 of 2 results.