A199836
Number of -n..n arrays x(0..6) of 7 elements with zero sum and no two neighbors summing to zero.
Original entry on oeis.org
22, 1650, 20240, 118280, 462234, 1402934, 3579520, 8046928, 16426926, 31082698, 55316976, 93593720, 151783346, 237431502, 360051392, 531439648, 766015750, 1081184994, 1497725008, 2040195816, 2737373450, 3622707110, 4734799872
Offset: 1
Some solutions for n=3:
..0....1...-2...-1...-1....3....0....1...-1....1...-2...-2....0....2...-1....0
.-1....0....1...-1...-2....1....3....1...-3....0....3...-1....1...-1...-3....2
.-1....1....3...-1...-1...-3...-1...-2....1...-1....2....2...-2...-1...-2....1
.-1...-3....3....3....3...-3...-2....0...-2...-3....0....1....1...-2....1...-2
..2...-3...-2...-1....3....0....3...-1....3....2...-2....2....1....1....2...-3
..1....1...-1....0...-2....3...-1....0....1....1....1....1....0...-2....0....0
..0....3...-2....1....0...-1...-2....1....1....0...-2...-3...-1....3....3....2
A199837
Number of -n..n arrays x(0..7) of 8 elements with zero sum and no two neighbors summing to zero.
Original entry on oeis.org
34, 6126, 113884, 888420, 4340094, 15805218, 47040968, 120843752, 277500282, 583380598, 1141982292, 2107735180, 3702875670, 6237700074, 10134506112, 15955531856, 24435201362, 36516986238, 53395192396, 76561981236
Offset: 1
Some solutions for n=3:
..0....1....2....2...-2....0...-2....0...-2....2....1...-2...-1...-3....0...-2
..2....0....0....1...-1....2...-1....1....0....1....3....1....2....0...-2....3
..2...-3....1....0....0...-3....0....2....2....2....0....0....1....3....3....0
.-3....0...-3...-2...-1...-1....1...-3...-3....0....1....2...-2....0....2....1
..0....1....0...-2....0....0....1...-1...-1...-3...-3....2...-1...-1...-1....2
..3...-3...-1....3....1....1....0...-1....3...-1...-1....0....0....0...-1....0
.-2....2...-2....0....2....2....2....0....3...-3...-3...-1....3....1....0...-2
.-2....2....3...-2....1...-1...-1....2...-2....2....2...-2...-2....0...-1...-2
A199838
Number of -n..n arrays x(0..8) of 9 elements with zero sum and no two neighbors summing to zero.
Original entry on oeis.org
66, 23206, 645780, 6715618, 41008804, 179213048, 622300326, 1827026482, 4719970500, 11025201168, 23740333870, 47800415256, 90973748554, 165038447302, 287293180292, 482460245532, 785043786046, 1242210635346, 1917265955424
Offset: 1
Some solutions for n=3:
.-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3....0
.-3...-3...-3....2....2....2....2....1...-1....0...-1...-3....2....0....1...-3
.-1...-1....0....1...-1....0....0...-3...-1....2....0...-1....3....1...-2...-2
..2....0...-3...-3...-2....1....2....1....2...-1....2...-1....1....2....1....3
..0....2....2...-3....3...-3....0....3....2....0....2....3...-2....1....3...-1
.-1....0....3...-2....0...-1...-3...-1...-3...-3....0....3...-3....3...-1...-2
..3....3....0....3...-1....2...-1....3....0....0....1....0....1....0....2....3
..3....0....2....2....0....1....2....1....2....3...-2....3....2...-1....2...-1
..0....2....2....3....2....1....1...-2....2....2....1...-1...-1...-3...-3....3
A199839
Number of -n..n arrays x(0..9) of 10 elements with zero sum and no two neighbors summing to zero.
Original entry on oeis.org
138, 88636, 3685550, 51077518, 389832124, 2044221894, 8281149188, 27785393300, 80752300406, 209581305608, 496408914210, 1090354976530, 2248071267000, 4391976524034, 8191437222152, 14673108432136, 25367684178562
Offset: 1
Some.solutions.for.n=3
.-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3
.-3...-2...-3...-3...-2...-3...-2...-3...-3...-3...-3...-2...-3...-3...-3...-2
..2....0....2...-1...-3....1....1....0....1....0....2....0....1....1....2....1
..1...-1....3....2....1....1...-3....3...-2....2....0....1....1...-2....0....1
..1....3....3....2....1....3....2....2....3....3....1...-2....2....3...-1....3
..2...-1....2...-3....3....1....1....0....2....3....1....3....0....3....3....1
.-3....0....1....1....3....3....1....1....3....0....1...-2...-3....0....2...-2
..1....1....1....3....1....0....2...-2....0....1...-2....3....1....2....1...-2
..1....3...-3....0....1...-2....0....1...-2...-2....3....3....1...-1...-2....1
..1....0...-3....2...-2...-1....1....1....1...-1....0...-1....3....0....1....2
A266913
Denominator of the volume of d dimensional symmetric convex cuboid with constraints |x1 + x2 + ... xd| <= 1 and |x1|, |x2|, ..., |xd| <= 1.
Original entry on oeis.org
1, 1, 3, 12, 5, 180, 315, 2240, 567, 907200, 51975, 13305600, 289575, 80720640, 212837625, 3487131648000, 2297295, 64023737057280, 14849255421, 28963119144960000, 17717861581875, 140500090972200960000, 16436269594119375, 6204484017332394393600, 40639128117328125
Offset: 1
For d = 3 the volume is 16/3, for each volume we have V[1] = 2, V[2] = 3, V[3] = 16/3, V[4] = 115/12, V[5] = 88/5, V[6] = 5887/180, V[7] = 19328/315, V[8] = 259723/2240, V[9] = 124952/567, V[10] = 381773117/907200, etc.
The numerator sequence is given by
A269067.
Cf.
A199832 The rational coefficient of the leading coefficient of the empirical rows duplicates these volume integrals in sequence. This is not a proof.
-
V[d_] := Integrate[Boole[Abs[Sum[x[i], {i, 1, d}]] <= 1],
Table[x[i], {i, 1, d}] \[Element]
Cuboid[Table[-1, {i, 1, d}], Table[+1, {i, 1, d}]]] (* Lorenz H. Menke, Jr. *)
v[d_] := With[{a = Array[x,d]},RegionMeasure @ ImplicitRegion[a ∈ Cuboid[-Table[1, d], Table[1, d]] && -1 <= Total[a] <= 1,a]] (* Carl Woll *)
v[d_] := 2^(d+1)/(Pi) Integrate[Sin[t]^(d+1)/t^(n+1), {t, 0, Infinity}] (* Carl Woll *)
A269067
Numerator of the volume of d dimensional symmetric convex cuboid with constraints |x1 + x2 + ... xd| <= 1 and |x1|, |x2|, ..., |xd| <= 1.
Original entry on oeis.org
2, 3, 16, 115, 88, 5887, 19328, 259723, 124952, 381773117, 41931328, 20646903199, 866732192, 467168310097, 2386873693184, 75920439315929441, 97261697912, 5278968781483042969, 2387693641959232, 9093099984535515162569, 10872995484706511008, 168702835448329388944396777, 38650653745373963289088
Offset: 1
For d = 3 the volume is 16/3, for each volume we have V[1] = 2, V[2] = 3, V[3] = 16/3, V[4] = 115/12, V[5] = 88/5, V[6] = 5887/180, V[7] = 19328/315, V[8] = 259723/2240, V[9] = 124952/567, V[10] = 381773117/907200, etc.
The denominator sequence is given by
A266913.
Cf.
A199832 The rational coefficient of the leading coefficient of the empirical rows duplicates these volume integrals in sequence. This is not a proof.
-
V[d_] := Integrate[Boole[Abs[Sum[x[i], {i, 1, d}]] <= 1],
Table[x[i], {i, 1, d}] \[Element]
Cuboid[Table[-1, {i, 1, d}], Table[+1, {i, 1, d}]]] (* Lorenz H. Menke, Jr. *)
v[d_] := With[{a = Array[x,d]}, RegionMeasure @ ImplicitRegion[ a ∈ Cuboid[-Table[1, d], Table[1, d]] && -1 <= Total[a] <= 1, a]] (* Carl Woll *)
v[d_] := 2^(d+1)/(Pi) Integrate[Sin[t]^(d+1)/t^(n+1), {t, 0, Infinity}] (* Carl Woll *)
Comments