cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 136 results. Next

A200238 Decimal expansion of greatest x satisfying 3*x^2 - 3*cos(x) = sin(x).

Original entry on oeis.org

9, 3, 0, 0, 5, 7, 1, 1, 0, 0, 9, 2, 4, 8, 9, 2, 4, 6, 7, 8, 8, 2, 4, 6, 8, 1, 4, 4, 0, 5, 6, 4, 2, 9, 8, 7, 6, 1, 2, 8, 2, 5, 6, 1, 0, 1, 9, 3, 3, 3, 0, 7, 7, 4, 3, 6, 2, 1, 4, 0, 0, 8, 2, 0, 5, 2, 4, 8, 3, 3, 0, 7, 8, 7, 5, 2, 4, 1, 7, 9, 3, 2, 7, 7, 1, 6, 9, 0, 3, 3, 2, 7, 7, 5, 3, 4, 1, 1, 2
Offset: 0

Views

Author

Clark Kimberling, Nov 15 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.725773931375098148951813264652313...
greatest x: 0.9300571100924892467882468144056...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 3; b = -3; c = 1;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.73, -.72}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200237 *)
    r = x /. FindRoot[f[x] == g[x], {x, .93, .94}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200238 *)
  • PARI
    a=3; b=-3; c=1; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 05 2018

A200239 Decimal expansion of least x satisfying 3*x^2-3*cos(x)=2*sin(x).

Original entry on oeis.org

6, 3, 7, 6, 6, 1, 1, 5, 7, 9, 4, 6, 0, 7, 3, 1, 3, 4, 1, 1, 9, 8, 9, 5, 4, 5, 6, 5, 8, 8, 1, 9, 6, 2, 0, 1, 3, 7, 3, 3, 9, 9, 2, 2, 8, 0, 7, 2, 7, 3, 3, 8, 6, 9, 5, 5, 6, 1, 0, 6, 2, 3, 0, 9, 0, 1, 0, 1, 4, 0, 5, 4, 5, 4, 4, 3, 3, 0, 7, 9, 6, 8, 0, 0, 1, 4, 3, 8, 4, 6, 5, 1, 0, 7, 1, 4, 4, 7, 8
Offset: 0

Views

Author

Clark Kimberling, Nov 15 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.63766115794607313411989545658819620...
greatest x: 1.039829693324607596071793532120387...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 3; b = -3; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.64, -.63}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200239 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200240 *)
  • PARI
    a=3; b=-3; c=2; solve(x=-.64, -.63, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

A200240 Decimal expansion of greatest x satisfying 3*x^2-3*cos(x)=2*sin(x).

Original entry on oeis.org

1, 0, 3, 9, 8, 2, 9, 6, 9, 3, 3, 2, 4, 6, 0, 7, 5, 9, 6, 0, 7, 1, 7, 9, 3, 5, 3, 2, 1, 2, 0, 3, 8, 7, 7, 6, 2, 6, 4, 1, 3, 2, 0, 9, 3, 9, 9, 9, 6, 8, 7, 3, 4, 1, 4, 4, 0, 5, 9, 2, 6, 3, 0, 4, 7, 3, 9, 8, 1, 6, 8, 8, 9, 6, 2, 3, 0, 3, 5, 4, 8, 8, 6, 6, 3, 9, 1, 6, 5, 0, 2, 9, 3, 0, 7, 2, 3, 3, 6
Offset: 1

Views

Author

Clark Kimberling, Nov 15 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.63766115794607313411989545658819620...
greatest x: 1.039829693324607596071793532120387...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 3; b = -3; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.64, -.63}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200239 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200240 *)
  • PARI
    a=3; b=-3; c=2; solve(x=1.0, 1.1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

A200241 Decimal expansion of least x satisfying 3*x^2 - 3*cos(x) = 4*sin(x), negated.

Original entry on oeis.org

4, 9, 5, 5, 9, 4, 2, 3, 2, 7, 9, 8, 1, 1, 0, 8, 0, 3, 9, 6, 6, 6, 9, 4, 0, 8, 1, 3, 6, 0, 6, 6, 6, 2, 3, 4, 8, 1, 2, 3, 0, 0, 4, 8, 8, 5, 5, 2, 1, 1, 1, 9, 5, 6, 6, 1, 7, 6, 5, 0, 5, 3, 3, 1, 4, 8, 8, 0, 6, 1, 9, 9, 6, 4, 2, 7, 5, 6, 6, 0, 3, 9, 4, 8, 5, 9, 8, 0, 7, 7, 1, 0, 7, 1, 4, 6, 6, 2, 3
Offset: 0

Views

Author

Clark Kimberling, Nov 15 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.495594232798110803966694081360666...
greatest x: 1.2559670249437296288542832153976444...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 3; b = -3; c = 4;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.50, -.49}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200241 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.25, 1.26}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200242 *)
  • PARI
    a=3; b=-3; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

A200242 Decimal expansion of greatest x satisfying 3*x^2 - 3*cos(x) = 4*sin(x).

Original entry on oeis.org

1, 2, 5, 5, 9, 6, 7, 0, 2, 4, 9, 4, 3, 7, 2, 9, 6, 2, 8, 8, 5, 4, 2, 8, 3, 2, 1, 5, 3, 9, 7, 6, 4, 4, 4, 0, 2, 9, 8, 0, 6, 0, 3, 7, 6, 1, 1, 7, 9, 2, 9, 5, 7, 7, 3, 0, 3, 4, 6, 6, 1, 3, 9, 2, 6, 3, 8, 4, 5, 3, 4, 5, 3, 8, 0, 0, 6, 5, 3, 6, 1, 7, 3, 8, 6, 7, 1, 5, 5, 0, 1, 4, 0, 1, 0, 6, 1, 5, 2
Offset: 1

Views

Author

Clark Kimberling, Nov 15 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.495594232798110803966694081360666...
greatest x: 1.2559670249437296288542832153976444...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 3; b = -3; c = 4;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.50, -.49}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200241 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.25, 1.26}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200242 *)
  • PARI
    a=3; b=-3; c=4; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

A200277 Decimal expansion of least x satisfying 3*x^2 - 4*cos(x) = sin(x), negated.

Original entry on oeis.org

8, 1, 7, 7, 1, 5, 2, 1, 8, 7, 9, 2, 3, 0, 4, 5, 4, 5, 1, 1, 1, 9, 1, 4, 5, 4, 2, 0, 8, 3, 6, 5, 7, 7, 7, 1, 5, 3, 9, 3, 9, 1, 6, 5, 1, 3, 2, 7, 1, 2, 0, 1, 5, 3, 7, 2, 7, 9, 0, 7, 5, 0, 9, 9, 8, 6, 2, 4, 1, 4, 4, 1, 9, 7, 2, 7, 4, 5, 8, 0, 2, 7, 4, 7, 1, 3, 8, 1, 9, 8, 3, 6, 2, 7, 8, 7, 2, 9, 0
Offset: 0

Views

Author

Clark Kimberling, Nov 15 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.81771521879230454511191454208365777...
greatest x: 1.000303639283590185187225035744180...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 3; b = -4; c = 1;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /.  FindRoot[f[x] == g[x], {x, -.82, -.81}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200277  *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200278 *)
  • PARI
    a=3; b=-4; c=1; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 05 2018

A200278 Decimal expansion of greatest x satisfying 3*x^2 - 4*cos(x) = sin(x).

Original entry on oeis.org

1, 0, 0, 0, 3, 0, 3, 6, 3, 9, 2, 8, 3, 5, 9, 0, 1, 8, 5, 1, 8, 7, 2, 2, 5, 0, 3, 5, 7, 4, 4, 1, 8, 0, 0, 1, 2, 2, 5, 8, 5, 6, 5, 6, 1, 8, 5, 2, 9, 2, 0, 2, 6, 4, 2, 6, 3, 2, 2, 5, 7, 4, 9, 5, 4, 6, 0, 9, 3, 0, 3, 2, 3, 5, 9, 3, 8, 1, 8, 7, 9, 0, 3, 9, 0, 6, 4, 2, 4, 1, 8, 6, 9, 7, 4, 6, 3, 5, 4
Offset: 1

Views

Author

Clark Kimberling, Nov 15 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.81771521879230454511191454208365777...
greatest x: 1.000303639283590185187225035744180...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 3; b = -4; c = 1;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /.  FindRoot[f[x] == g[x], {x, -.82, -.81}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200277  *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200278 *)
  • PARI
    a=3; b=-4; c=1; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 05 2018

A200279 Decimal expansion of least x satisfying 3*x^2 - 4*cos(x) = 2*sin(x), negated.

Original entry on oeis.org

7, 3, 5, 6, 3, 8, 0, 7, 6, 4, 4, 4, 6, 8, 2, 0, 8, 6, 1, 4, 7, 7, 6, 9, 5, 5, 6, 1, 2, 3, 1, 1, 6, 8, 1, 9, 6, 8, 7, 7, 6, 5, 5, 3, 8, 3, 9, 9, 4, 8, 2, 5, 4, 5, 9, 7, 7, 0, 5, 1, 1, 3, 8, 7, 9, 4, 5, 8, 4, 1, 7, 8, 0, 7, 1, 9, 1, 9, 7, 3, 5, 5, 2, 8, 4, 2, 2, 0, 3, 5, 6, 5, 9, 2, 8, 5, 8, 5, 3
Offset: 0

Views

Author

Clark Kimberling, Nov 15 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.73563807644468208614776955612311...
greatest x: 1.096406992421267947221987681314...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 3; b = -4; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.74, -.73}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200279 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200280 *)
  • PARI
    a=3; b=-4; c=2; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 07 2018

A200280 Decimal expansion of greatest x satisfying 3*x^2 - 4*cos(x) = 2*sin(x).

Original entry on oeis.org

1, 0, 9, 6, 4, 0, 6, 9, 9, 2, 4, 2, 1, 2, 6, 7, 9, 4, 7, 2, 2, 1, 9, 8, 7, 6, 8, 1, 3, 1, 4, 0, 2, 0, 2, 2, 9, 8, 2, 3, 2, 2, 7, 4, 2, 6, 9, 9, 9, 1, 0, 5, 7, 2, 0, 4, 6, 6, 1, 8, 9, 3, 1, 7, 4, 9, 4, 3, 5, 6, 1, 2, 7, 3, 8, 5, 4, 7, 7, 3, 2, 9, 1, 5, 8, 4, 9, 3, 8, 2, 9, 1, 5, 0, 3, 7, 5, 9, 3
Offset: 1

Views

Author

Clark Kimberling, Nov 15 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.73563807644468208614776955612311...
greatest x: 1.096406992421267947221987681314...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 3; b = -4; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.74, -.73}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200279 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200280 *)
  • PARI
    a=3; b=-4; c=2; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 07 2018

A200281 Decimal expansion of least x satisfying 3*x^2 - 4*cos(x) = 3*sin(x), negated.

Original entry on oeis.org

6, 6, 1, 5, 7, 2, 3, 7, 8, 1, 8, 7, 9, 8, 9, 9, 9, 2, 0, 6, 2, 8, 9, 9, 3, 0, 7, 3, 2, 8, 9, 8, 9, 3, 6, 5, 5, 7, 5, 7, 4, 9, 6, 3, 1, 7, 5, 0, 6, 4, 6, 6, 2, 7, 2, 2, 8, 7, 0, 8, 1, 1, 3, 0, 6, 7, 7, 3, 1, 5, 1, 9, 9, 2, 2, 4, 8, 9, 9, 0, 3, 6, 0, 5, 1, 0, 4, 4, 8, 7, 6, 9, 7, 6, 4, 8, 7, 1, 4
Offset: 0

Views

Author

Clark Kimberling, Nov 15 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x: -0.6615723781879899920628993073289...
greatest x: 1.19240455007681565929009549661...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 3; b = -4; c = 3;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.67, -.66}, WorkingPrecision -> 110]
    RealDigits[r]    (* A200281 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200282 *)
  • PARI
    a=3; b=-4; c=3; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 07 2018
Previous Showing 101-110 of 136 results. Next