cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 136 results. Next

A200021 Decimal expansion of greatest x satisfying x^2 - 2*cos(x) = 2*sin(x).

Original entry on oeis.org

1, 4, 7, 6, 3, 6, 8, 7, 4, 8, 3, 8, 0, 9, 2, 0, 3, 9, 1, 6, 7, 1, 6, 9, 6, 8, 8, 9, 7, 8, 9, 8, 3, 6, 4, 1, 6, 4, 3, 6, 9, 3, 2, 3, 2, 3, 1, 9, 7, 3, 2, 4, 9, 9, 3, 0, 3, 6, 9, 4, 0, 4, 4, 5, 3, 9, 6, 6, 8, 4, 3, 0, 8, 6, 1, 5, 8, 0, 7, 6, 0, 1, 2, 4, 0, 6, 0, 1, 7, 3, 0, 4, 8, 3, 3, 6, 9, 6, 2
Offset: 1

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.64004919114257711573983526967584120...
greatest x: 1.4763687483809203916716968897898364...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -2; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.65, -.64}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200020 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.47, 1.48}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200021 *)
  • PARI
    a=1; b=-2; c=2; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018

A200022 Decimal expansion of least x satisfying x^2 - 2*cos(x) = 3*sin(x) (negated).

Original entry on oeis.org

5, 1, 4, 5, 1, 4, 8, 3, 0, 4, 7, 6, 4, 5, 8, 6, 8, 6, 5, 6, 5, 6, 3, 8, 9, 4, 5, 6, 7, 5, 3, 7, 1, 8, 1, 5, 9, 5, 2, 1, 1, 1, 9, 8, 3, 6, 7, 0, 3, 4, 0, 2, 2, 7, 8, 2, 0, 3, 9, 7, 8, 3, 7, 7, 5, 8, 1, 9, 3, 2, 4, 4, 5, 9, 9, 6, 6, 4, 1, 8, 7, 7, 8, 9, 1, 5, 6, 2, 9, 3, 8, 0, 2, 0, 5, 0, 3, 4, 2
Offset: 0

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.5145148304764586865656389456753718159521...
greatest x: 1.669692169649763458252838305984917335937...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -2; c = 3;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.52, -.51}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200022 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.66, 1.67}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200023 *)
  • PARI
    a=1; b=-2; c=3; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018

A200023 Decimal expansion of greatest x satisfying x^2 - 2*cos(x) = 3*sin(x).

Original entry on oeis.org

1, 6, 6, 9, 6, 9, 2, 1, 6, 9, 6, 4, 9, 7, 6, 3, 4, 5, 8, 2, 5, 2, 8, 3, 8, 3, 0, 5, 9, 8, 4, 9, 1, 7, 3, 3, 5, 9, 3, 7, 7, 5, 8, 9, 9, 6, 5, 9, 1, 6, 9, 9, 1, 6, 8, 2, 8, 2, 4, 0, 8, 4, 9, 6, 1, 1, 2, 9, 1, 0, 5, 6, 2, 3, 4, 4, 1, 3, 3, 4, 1, 9, 3, 2, 5, 7, 8, 3, 8, 7, 2, 9, 5, 5, 6, 9, 3, 4, 7
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.514514830476458686565638945675371815952...
greatest x: 1.66969216964976345825283830598491733593...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -2; c = 3;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.52, -.51}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200022 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.66, 1.67}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200023 *)
  • PARI
    a=1; b=-2; c=3; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018

A200024 Decimal expansion of least x satisfying x^2 - 2*cos(x) = 4*sin(x), negated.

Original entry on oeis.org

4, 2, 3, 5, 2, 7, 2, 9, 4, 7, 1, 8, 6, 9, 1, 1, 6, 1, 8, 5, 7, 4, 1, 1, 5, 5, 5, 0, 9, 6, 9, 2, 8, 8, 3, 4, 0, 2, 6, 1, 3, 5, 4, 6, 3, 4, 7, 0, 2, 5, 0, 3, 2, 6, 3, 0, 0, 0, 1, 8, 3, 3, 2, 6, 9, 9, 7, 3, 3, 7, 4, 3, 5, 0, 7, 9, 3, 7, 1, 8, 8, 5, 4, 1, 2, 8, 7, 9, 0, 5, 6, 9, 6, 1, 6, 7, 8, 1, 2
Offset: 0

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.42352729471869116185741155509692883402...
greatest x: 1.8307334532908635992102359547341478845366...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -2; c = 4;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.43, -.42}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200024 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.83, 1.84}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200025 *)
  • PARI
    a=1; b=-2; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018

Extensions

a(87)-a(98) corrected by G. C. Greubel, Jun 24 2018

A200025 Decimal expansion of greatest x satisfying x^2 - 2*cos(x) = 4*sin(x).

Original entry on oeis.org

1, 8, 3, 0, 7, 3, 3, 4, 5, 3, 2, 9, 0, 8, 6, 3, 5, 9, 9, 2, 1, 0, 2, 3, 5, 9, 5, 4, 7, 3, 4, 1, 4, 7, 8, 8, 4, 5, 3, 6, 6, 7, 8, 1, 2, 8, 3, 2, 4, 2, 1, 4, 9, 5, 2, 2, 9, 5, 8, 1, 6, 4, 2, 6, 7, 1, 0, 0, 0, 8, 5, 1, 1, 9, 4, 6, 2, 3, 6, 2, 0, 3, 8, 0, 5, 5, 4, 6, 3, 7, 8, 8, 4, 3, 4, 1, 1, 3, 7
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.42352729471869116185741155509692883402...
greatest x: 1.8307334532908635992102359547341478845...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -2; c = 4;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.43, -.42}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200024 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.83, 1.84}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200025 *)
  • PARI
    a=1; b=-2; c=4; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018

A200026 Decimal expansion of least x satisfying x^2 - 3*cos(x) = sin(x) (negated).

Original entry on oeis.org

9, 5, 5, 9, 0, 8, 7, 9, 8, 4, 8, 1, 6, 1, 3, 4, 1, 3, 5, 3, 7, 3, 0, 1, 4, 3, 9, 5, 8, 4, 4, 0, 6, 1, 0, 3, 5, 9, 4, 8, 9, 8, 6, 6, 8, 6, 7, 5, 3, 9, 4, 3, 2, 8, 6, 5, 9, 3, 6, 8, 9, 4, 2, 2, 4, 3, 3, 7, 9, 9, 4, 8, 6, 9, 8, 5, 4, 7, 3, 9, 0, 1, 1, 1, 9, 1, 2, 8, 8, 5, 8, 4, 3, 9, 8, 0, 0, 6, 3
Offset: 0

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.9559087984816134135373014395844...
greatest x: 1.31448560919776196551921986761091...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -3; c = 1;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.96, -.95}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200026 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.31, 1.34}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200027 *)
  • PARI
    a=1; b=-3; c=1; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018

A200027 Decimal expansion of greatest x satisfying x^2 - 3*cos(x) = sin(x).

Original entry on oeis.org

1, 3, 1, 4, 4, 8, 5, 6, 0, 9, 1, 9, 7, 7, 6, 1, 9, 6, 5, 5, 1, 9, 2, 1, 9, 8, 6, 7, 6, 1, 0, 9, 1, 0, 6, 0, 0, 1, 2, 8, 8, 8, 9, 4, 4, 1, 4, 1, 6, 8, 4, 7, 5, 3, 8, 0, 0, 2, 1, 2, 0, 7, 0, 0, 4, 7, 7, 1, 9, 8, 2, 3, 4, 9, 0, 0, 2, 9, 7, 4, 5, 7, 6, 7, 9, 0, 4, 2, 7, 1, 0, 0, 5, 0, 1, 4, 0, 6, 8
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.9559087984816134135373014395844...
greatest x: 1.31448560919776196551921986761091...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -3; c = 1;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.96, -.95}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200026 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.31, 1.34}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200027 *)
  • PARI
    a=1; b=-3; c=1; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018

A200093 Decimal expansion of least x satisfying x^2 - 3*cos(x) = 2*sin(x), negated.

Original entry on oeis.org

8, 0, 2, 9, 9, 2, 1, 5, 4, 2, 9, 7, 8, 8, 4, 2, 5, 0, 7, 2, 0, 3, 3, 5, 4, 5, 3, 4, 7, 4, 8, 7, 1, 2, 7, 4, 2, 9, 2, 1, 4, 1, 3, 5, 7, 7, 0, 0, 7, 2, 7, 7, 8, 3, 0, 6, 5, 8, 5, 4, 6, 2, 3, 2, 9, 7, 3, 5, 2, 1, 2, 9, 9, 1, 4, 3, 9, 4, 2, 5, 5, 9, 3, 6, 6, 4, 9, 4, 1, 0, 6, 9, 9, 2, 0, 4, 1, 7, 7
Offset: 0

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.8029921542978842507203354534748712742...
greatest x: 1.492665923525132206969243059834936861...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -3; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.81, -.80}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200093 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.49, 1.50}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200094 *)
  • PARI
    a=1; b=-3; c=2; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018

A200094 Decimal expansion of greatest x satisfying x^2 - 3*cos(x) = 2*sin(x).

Original entry on oeis.org

1, 4, 9, 2, 6, 6, 5, 9, 2, 3, 5, 2, 5, 1, 3, 2, 2, 0, 6, 9, 6, 9, 2, 4, 3, 0, 5, 9, 8, 3, 4, 9, 3, 6, 8, 6, 1, 2, 4, 0, 4, 8, 8, 9, 5, 6, 1, 6, 3, 5, 6, 4, 3, 2, 6, 8, 3, 4, 4, 8, 4, 7, 9, 6, 0, 6, 9, 1, 2, 4, 2, 5, 9, 1, 7, 2, 9, 7, 0, 3, 5, 3, 3, 6, 8, 4, 1, 3, 1, 4, 1, 0, 3, 0, 8, 7, 9, 1, 2
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.8029921542978842507203354534748712742...
greatest x: 1.492665923525132206969243059834936861...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -3; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.81, -.80}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200093 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.49, 1.50}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200094 *)
  • PARI
    a=1; b=-3; c=2; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018

A200095 Decimal expansion of least x satisfying x^2 - 3*cos(x) = 3*sin(x), negated.

Original entry on oeis.org

6, 7, 7, 1, 1, 9, 4, 1, 1, 6, 9, 7, 9, 4, 3, 1, 3, 0, 1, 8, 4, 1, 7, 9, 5, 2, 0, 0, 9, 8, 9, 1, 7, 0, 2, 1, 5, 5, 6, 6, 4, 5, 5, 5, 2, 5, 3, 3, 6, 9, 3, 2, 4, 4, 3, 7, 6, 9, 1, 1, 5, 4, 0, 1, 8, 3, 5, 0, 3, 8, 3, 8, 7, 6, 2, 7, 8, 4, 0, 3, 8, 9, 9, 8, 9, 8, 2, 7, 3, 9, 2, 3, 4, 8, 4, 8, 2, 9, 5
Offset: 0

Views

Author

Clark Kimberling, Nov 13 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  -0.677119411697943130184179520098917021...
greatest x: 1.6546997822939010711316866818308006354...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = -3; c = 3;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -.88, -.67}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200095 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.65, 1.66}, WorkingPrecision -> 110]
    RealDigits[r]  (* A200096 *)
  • PARI
    a=1; b=-3; c=3; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018
Previous Showing 41-50 of 136 results. Next