cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 64 results. Next

A201765 Decimal expansion of the least x satisfying 9-x^2=e^x.

Original entry on oeis.org

2, 9, 9, 1, 6, 2, 0, 6, 3, 0, 1, 2, 8, 1, 8, 7, 5, 0, 5, 2, 3, 7, 9, 6, 0, 2, 9, 2, 2, 9, 2, 9, 3, 8, 0, 3, 8, 0, 3, 8, 7, 8, 7, 3, 4, 2, 2, 5, 3, 6, 1, 2, 3, 8, 5, 4, 8, 1, 1, 5, 0, 4, 1, 9, 3, 5, 3, 0, 4, 6, 1, 3, 5, 5, 8, 0, 8, 8, 7, 2, 0, 8, 2, 9, 3, 3, 1, 7, 9, 3, 1, 3, 0, 2, 6, 5, 6, 4, 0
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -2.9916206301281875052379602922929380380...
greatest:  1.76960110019935768918659677471067851...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = -1; b = 0; c = 9;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -2.9, -3.0}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201765 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.7, 1.8}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201766 *)

A201766 Decimal expansion of the greatest x satisfying -x^2+9=e^x.

Original entry on oeis.org

1, 7, 6, 9, 6, 0, 1, 1, 0, 0, 1, 9, 9, 3, 5, 7, 6, 8, 9, 1, 8, 6, 5, 9, 6, 7, 7, 4, 7, 1, 0, 6, 7, 8, 5, 1, 9, 9, 3, 5, 1, 5, 9, 4, 7, 9, 1, 3, 4, 5, 7, 5, 9, 2, 4, 5, 1, 3, 4, 1, 4, 7, 4, 3, 8, 1, 3, 3, 3, 1, 5, 0, 8, 9, 2, 9, 8, 9, 2, 9, 1, 0, 0, 7, 5, 8, 9, 1, 5, 3, 9, 3, 7, 6, 1, 9, 9, 2, 7
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -2.9916206301281875052379602922929380380...
greatest:  1.76960110019935768918659677471067851...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = -1; b = 0; c = 9;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -2.9, -3.0}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201765 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.7, 1.8}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201766 *)

A201767 Decimal expansion of the least x satisfying 10 - x^2 = e^x.

Original entry on oeis.org

3, 1, 5, 5, 5, 3, 2, 3, 3, 0, 7, 9, 6, 3, 4, 6, 4, 4, 6, 9, 3, 2, 3, 0, 3, 3, 1, 9, 2, 6, 5, 8, 4, 0, 7, 0, 0, 0, 1, 0, 4, 2, 5, 6, 4, 4, 8, 9, 1, 1, 1, 9, 8, 6, 3, 7, 4, 6, 9, 1, 3, 5, 4, 3, 7, 9, 8, 7, 6, 6, 6, 9, 4, 4, 2, 6, 5, 5, 6, 4, 0, 3, 8, 8, 5, 0, 7, 3, 6, 1, 5, 0, 4, 4, 1, 0, 2, 2, 6
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -3.1555323307963464469323033192658407000...
greatest:  1.87144644984680656529114045650417237...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = -1; b = 0; c = 10;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -4, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -3.2, -3.1}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201767 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.8, 1.9}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201768 *)

Extensions

a(93) onwards corrected by Georg Fischer, Aug 03 2021

A201768 Decimal expansion of the greatest x satisfying 10-x^2=e^x.

Original entry on oeis.org

1, 8, 7, 1, 4, 4, 6, 4, 4, 9, 8, 4, 6, 8, 0, 6, 5, 6, 5, 2, 9, 1, 1, 4, 0, 4, 5, 6, 5, 0, 4, 1, 7, 2, 3, 7, 6, 2, 2, 9, 5, 9, 5, 6, 2, 1, 9, 7, 0, 1, 7, 6, 6, 6, 4, 1, 0, 2, 7, 7, 0, 1, 4, 1, 5, 5, 0, 1, 3, 6, 6, 8, 3, 3, 5, 0, 0, 9, 1, 5, 8, 7, 5, 2, 4, 9, 3, 6, 5, 2, 1, 0, 8, 9, 4, 4, 3, 4, 6
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -3.1555323307963464469323033192658407000...
greatest:  1.87144644984680656529114045650417237...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = -1; b = 0; c = 10;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -4, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -3.2, -3.1}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201767 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.8, 1.9}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201768 *)

A201890 Decimal expansion of the nonzero number x satisfying x^2+2x+1=e^x.

Original entry on oeis.org

2, 5, 1, 2, 8, 6, 2, 4, 1, 7, 2, 5, 2, 3, 3, 9, 3, 5, 3, 9, 6, 5, 4, 7, 5, 2, 3, 3, 2, 1, 8, 4, 3, 2, 6, 5, 3, 8, 3, 2, 8, 3, 3, 6, 6, 3, 4, 0, 2, 6, 4, 7, 4, 2, 2, 2, 5, 1, 7, 8, 9, 4, 5, 4, 0, 9, 6, 6, 0, 0, 9, 5, 7, 0, 8, 2, 1, 0, 3, 8, 0, 7, 0, 6, 7, 3, 2, 9, 5, 0, 1, 8, 9, 4, 5, 0, 1, 6, 9
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=2.51286241725233935396547523321843265383...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 2; c = 1;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 2.5, 2.6}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201890 *)

A201895 Decimal expansion of the least x satisfying x^2+3x+1=e^x.

Original entry on oeis.org

2, 6, 4, 9, 2, 1, 9, 8, 8, 7, 7, 6, 7, 2, 9, 2, 9, 6, 5, 3, 4, 8, 4, 9, 6, 1, 3, 7, 9, 5, 3, 4, 0, 8, 1, 5, 2, 7, 9, 6, 9, 5, 4, 5, 4, 5, 4, 9, 7, 2, 0, 5, 7, 6, 3, 0, 7, 4, 6, 5, 8, 0, 9, 0, 6, 1, 2, 5, 0, 6, 6, 9, 9, 0, 9, 4, 1, 9, 6, 6, 6, 6, 7, 3, 7, 3, 0, 1, 0, 6, 4, 5, 0, 2, 0, 7, 9, 3, 6
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -2.649219887767292965348496137953408152796...
greatest:  2.8931164309252712203155349313495308853...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 3; c = 1;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -4, 4}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -2.7, -2.6}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201895 *)
    r = x /. FindRoot[f[x] == g[x], {x, 2.9, 3.0}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201986 *)  (* NOTE: 3 zeros *)

A201903 Decimal expansion of the least x satisfying x^2+4x+1=e^x.

Original entry on oeis.org

3, 7, 3, 8, 9, 0, 2, 0, 0, 9, 6, 6, 8, 9, 9, 6, 7, 2, 5, 1, 8, 0, 2, 0, 5, 8, 0, 9, 5, 3, 9, 2, 7, 8, 2, 3, 0, 1, 4, 7, 6, 6, 8, 8, 9, 7, 0, 7, 8, 6, 0, 7, 2, 8, 2, 2, 0, 0, 9, 9, 5, 7, 9, 2, 4, 2, 6, 0, 6, 8, 0, 9, 5, 0, 9, 5, 6, 0, 2, 8, 1, 5, 4, 6, 6, 1, 1, 4, 3, 9, 1, 8, 8, 9, 8, 5, 0, 7, 5
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -3.73890200966899672518020580953927823014766...
greatest:  3.164137111637938325284466966738921596561...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 4; c = 1;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -4, 3.3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -3.8, -3.7}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201903 *)
     r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.2}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201904 *)

A201904 Decimal expansion of the greatest x satisfying x^2+4x+1=e^x.

Original entry on oeis.org

3, 1, 6, 4, 1, 3, 7, 1, 1, 1, 6, 3, 7, 9, 3, 8, 3, 2, 5, 2, 8, 4, 4, 6, 6, 9, 6, 6, 7, 3, 8, 9, 2, 1, 5, 9, 6, 5, 6, 1, 5, 5, 3, 9, 9, 2, 8, 5, 9, 5, 4, 4, 6, 8, 2, 9, 4, 2, 9, 6, 9, 5, 3, 8, 4, 1, 0, 1, 9, 5, 2, 1, 7, 6, 4, 7, 0, 9, 8, 9, 5, 4, 3, 6, 1, 5, 6, 7, 8, 3, 8, 2, 0, 9, 3, 2, 1, 8, 6
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -3.73890200966899672518020580953927823014766...
greatest:  3.164137111637938325284466966738921596561...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 4; c = 1;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -4, 3.3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -3.8, -3.7}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201903 *)
     r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.2}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201904 *)

A201931 Decimal expansion of the least x satisfying x^2+5x+1=e^x.

Original entry on oeis.org

4, 7, 9, 3, 0, 9, 5, 4, 5, 5, 1, 2, 7, 4, 9, 3, 5, 8, 9, 5, 6, 5, 6, 2, 1, 1, 0, 8, 5, 0, 4, 2, 0, 4, 3, 1, 4, 3, 4, 8, 9, 0, 9, 3, 1, 7, 4, 9, 1, 1, 1, 6, 0, 8, 1, 0, 6, 7, 9, 3, 2, 4, 1, 6, 4, 7, 7, 9, 2, 7, 2, 5, 5, 7, 4, 3, 6, 2, 1, 1, 3, 1, 9, 9, 3, 3, 1, 8, 8, 1, 4, 2, 4, 1, 1, 4, 3, 6, 1
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -4.79309545512749358956562110850420...
greatest:  3.377361484197400579255025058889...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 5; c = 1;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -5, 3.5}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -4.8, -4.7}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201931 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.3, 3.4}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201932 *)

A201932 Decimal expansion of the greatest x satisfying x^2+5x+1=e^x.

Original entry on oeis.org

3, 3, 7, 7, 3, 6, 1, 4, 8, 4, 1, 9, 7, 4, 0, 0, 5, 7, 9, 2, 5, 5, 0, 2, 5, 0, 5, 8, 8, 8, 9, 2, 1, 0, 6, 1, 4, 3, 9, 2, 6, 1, 0, 8, 0, 3, 0, 3, 1, 5, 9, 4, 9, 4, 8, 2, 5, 0, 4, 0, 2, 2, 1, 0, 4, 2, 4, 4, 1, 7, 7, 6, 0, 9, 0, 2, 6, 1, 0, 7, 7, 4, 6, 8, 2, 9, 4, 9, 2, 4, 0, 2, 5, 7, 2, 0, 2, 7, 5
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -4.79309545512749358956562110850420...
greatest:  3.377361484197400579255025058889...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 5; c = 1;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -5, 3.5}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -4.8, -4.7}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201931 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.3, 3.4}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201932 *)
Previous Showing 31-40 of 64 results. Next