cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-64 of 64 results.

A201900 Decimal expansion of the number x satisfying x^2+3x+3=e^x.

Original entry on oeis.org

3, 0, 7, 7, 4, 5, 4, 7, 2, 9, 8, 2, 6, 0, 8, 8, 7, 0, 5, 2, 1, 7, 7, 4, 2, 5, 0, 8, 3, 6, 7, 5, 6, 3, 7, 9, 8, 8, 2, 0, 7, 5, 7, 4, 0, 0, 8, 7, 0, 6, 5, 0, 9, 1, 8, 7, 9, 9, 5, 9, 0, 9, 1, 1, 8, 4, 5, 4, 2, 6, 0, 8, 9, 5, 1, 6, 7, 4, 1, 4, 6, 2, 1, 2, 4, 0, 4, 9, 5, 6, 9, 5, 8, 8, 4, 5, 2, 9, 3
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=3.077454729826088705217742508367563798820757400...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 3; c = 3;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3.3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201900 *)

A201901 Decimal expansion of the number x satisfying x^2+3x+4=e^x.

Original entry on oeis.org

3, 1, 5, 2, 5, 9, 0, 7, 3, 6, 7, 5, 7, 1, 5, 8, 2, 7, 4, 9, 9, 6, 9, 8, 9, 0, 0, 4, 7, 6, 7, 1, 3, 9, 7, 8, 5, 8, 1, 3, 8, 0, 9, 4, 4, 8, 2, 5, 9, 8, 9, 3, 1, 5, 4, 6, 3, 5, 0, 1, 5, 8, 0, 5, 9, 3, 5, 0, 8, 5, 3, 3, 6, 7, 0, 4, 6, 0, 8, 0, 6, 7, 6, 4, 9, 5, 9, 5, 4, 4, 3, 7, 3, 6, 5, 7, 9, 3, 3
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=3.1525907367571582749969890047671397858138094...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 3; c = 4;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3.3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.2}, WorkingPrecision -> 110]
    RealDigits[r]      (* A201901 *)

A201902 Decimal expansion of the number x satisfying x^2+3x+5=e^x.

Original entry on oeis.org

3, 2, 2, 0, 0, 1, 7, 9, 5, 0, 5, 2, 5, 7, 1, 0, 2, 9, 5, 7, 7, 7, 0, 9, 2, 0, 9, 2, 5, 0, 5, 1, 3, 0, 1, 7, 8, 3, 9, 2, 9, 8, 3, 1, 6, 0, 4, 3, 3, 1, 1, 5, 5, 0, 8, 4, 6, 2, 9, 1, 1, 4, 0, 0, 9, 8, 2, 4, 9, 0, 5, 6, 5, 5, 3, 2, 3, 7, 6, 0, 7, 0, 3, 7, 7, 3, 6, 5, 3, 1, 3, 0, 2, 0, 7, 8, 8, 9, 8
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			3.220017950525710295777092092505130178392983...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 3; c = 5;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3.3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 3.2, 3.3}, WorkingPrecision -> 110]
    RealDigits[r]      (* A201902 *)

A201930 Decimal expansion of the number x satisfying x^2 + 4*x + 5 = e^x.

Original entry on oeis.org

3, 4, 1, 0, 1, 4, 6, 8, 4, 4, 9, 4, 5, 6, 2, 9, 4, 9, 2, 2, 8, 6, 4, 8, 0, 6, 3, 6, 5, 3, 0, 2, 2, 6, 0, 6, 6, 2, 5, 2, 5, 3, 7, 8, 6, 7, 5, 2, 9, 8, 6, 1, 1, 6, 1, 3, 1, 4, 9, 0, 9, 4, 7, 4, 9, 5, 1, 4, 5, 3, 9, 8, 1, 4, 0, 1, 7, 1, 0, 0, 4, 5, 7, 2, 1, 2, 0, 7, 0, 5, 3, 8, 2, 1, 6, 3, 0, 6, 0
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			3.410146844945629492286480636530226066252...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 4; c = 5;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3.5}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 3.4, 3.5}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201930 *)

Extensions

a(96) onwards corrected by Georg Fischer, Aug 03 2021
Previous Showing 61-64 of 64 results.