cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 248 results. Next

A204996 Least k^2 such that n divides k^2-j^2 for some j

Original entry on oeis.org

4, 9, 4, 9, 9, 16, 16, 9, 25, 36, 36, 16, 49, 64, 16, 25, 81, 81, 100, 36, 25, 144, 144, 25, 100, 196, 36, 64, 225, 64, 256, 36, 49, 324, 36, 81, 361, 400, 64, 49, 441, 100, 484, 144, 49, 576, 576, 49, 196, 225, 100, 196, 729, 144, 64, 81, 121, 900, 900, 64
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A204994.)

A204997 The square j^2 such that n divides k^2-j^2>0, where k is the least positive integer for which such a j exists.

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 9, 1, 16, 16, 25, 4, 36, 36, 1, 9, 64, 9, 81, 16, 4, 100, 121, 1, 25, 144, 9, 36, 196, 4, 225, 4, 16, 256, 1, 9, 324, 324, 25, 9, 400, 16, 441, 100, 4, 484, 529, 1, 49, 25, 49, 144, 676, 36, 9, 25, 64, 784, 841, 4
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A204994.)

A204998 a(n) = k^2 - j^2, where (k^2,j^2) is the least pair of distinct squares for which n divides their difference.

Original entry on oeis.org

3, 8, 3, 8, 5, 12, 7, 8, 9, 20, 11, 12, 13, 28, 15, 16, 17, 72, 19, 20, 21, 44, 23, 24, 75, 52, 27, 28, 29, 60, 31, 32, 33, 68, 35, 72, 37, 76, 39, 40, 41, 84, 43, 44, 45, 92, 47, 48, 147, 200, 51, 52, 53, 108, 55, 56, 57, 116, 59, 60, 61, 124, 63, 64, 65, 132, 67, 68, 69, 140, 71, 72, 73, 148, 75, 76, 77, 156, 79, 80, 81, 164
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A204994.)
  • PARI
    A204998(n) = { my(d); for(k=sqrtint(1+n), oo, for(j=1,k-1,if(!((d=(k^2)-(j^2))%n),return(d),if(dAntti Karttunen, Sep 28 2018

Formula

a(n) = A204996(n) - A204997(n).

Extensions

More terms from Antti Karttunen, Sep 28 2018

A205150 s(k)-s(j), where (s(k),s(j)) is the least such pair for which n divides their difference, and s(j)=prime(j)*prime(j+1).

Original entry on oeis.org

9, 20, 9, 20, 20, 42, 42, 128, 9, 20, 66, 108, 78, 42, 180, 128, 102, 108, 114, 20, 42, 66, 230, 144, 850, 78, 108, 308, 29, 180, 62, 128, 66, 102, 2485, 108, 370, 114, 78, 360, 246, 42, 215, 308, 180, 230, 893, 144, 294, 850, 102, 884, 636, 108, 1980
Offset: 1

Views

Author

Clark Kimberling, Jan 25 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205146.)
  • PARI
    s(m) = prime(m)*prime(m+1);
    isok(k, n) = my(sk=s(k)); for (j=1, k-1, if (!Mod(sk-s(j), n), return (j)));
    a(n) = my(k=1, x); while (!(j=isok(k, n)), k++); s(k) - s(j); \\ Michel Marcus, Jul 23 2021

A205406 a(n) = s(k)-s(j), where (k,j) is the least pair for which n divides s(k)-s(j), and s(j) = floor((j+1)^2/2)/2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 18, 10, 11, 12, 13, 14, 15, 16, 34, 18, 19, 20, 21, 22, 23, 24, 50, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 98, 50, 51, 52, 106, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 201, 68
Offset: 1

Views

Author

Clark Kimberling, Jan 27 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Examples

			The least k such that 9 divides s(k)-s(j) for some k is k=8, for which j=2: s(8)-s(2) = 20-2 = 18, so a(9)=18.
		

Crossrefs

Programs

  • Mathematica
    (See the program at A205402.)
    s[m_]:=s[m]=Floor[(m+1)^2/2]/2
    A205406[n_]:=(k=2; found=False; While[!found, Do[If[Mod[d=s[k]-s[j], n]==0, found=True; Break[]], {j, k-1}]; k++]; d)
    nterms=100; Table[A205406[n], {n, nterms}] (* Paolo Xausa, Dec 03 2021 *)
  • PARI
    A002620(n) = ((n^2)>>2);
    A002620shiftedleft(n) = A002620(1+n);
    A205406(n) = { my(d); for(k=2,oo, for(j=1,k-1,if(!((d=A002620shiftedleft(k)-A002620shiftedleft(j))%n),return(d)))); }; \\ Antti Karttunen, Dec 05 2021

Formula

a(n) = n * A198293(n). - Antti Karttunen, Dec 05 2021

Extensions

Definition corrected by Clark Kimberling, Dec 05 2021

A205446 s(k)-s(j), where (k,j) is the least pair for which n divides s(k)-s(j), and s(j)=Fibonacci(2j-1).

Original entry on oeis.org

1, 4, 3, 4, 55, 12, 21, 8, 144, 220, 11, 12, 377, 84, 6765, 32, 2584, 144, 76, 220, 21, 88, 46368, 144, 12586269025, 1508, 14930352, 84, 29, 27060, 1364, 32, 33, 2584, 102334155, 144, 39088169, 76, 317811, 832040, 6765, 84, 701408733, 88
Offset: 1

Views

Author

Clark Kimberling, Jan 27 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205442.)

A205546 Least positive integer k such that n divides k^k-j^j for some j in [1,k-1].

Original entry on oeis.org

2, 3, 2, 4, 4, 4, 4, 6, 4, 6, 5, 4, 3, 4, 4, 6, 4, 4, 5, 6, 4, 5, 3, 8, 6, 3, 6, 4, 6, 8, 6, 6, 6, 8, 6, 4, 7, 9, 8, 6, 9, 4, 6, 5, 8, 8, 10, 8, 8, 6, 4, 9, 9, 9, 8, 8, 8, 6, 9, 8, 10, 12, 4, 6, 8, 9, 9, 8, 8, 8, 5, 10, 10, 9, 12, 9, 8, 9, 9, 6, 9, 9, 18, 4, 4, 16, 7, 8, 8, 12, 8, 8, 12, 10
Offset: 1

Views

Author

Clark Kimberling, Jan 31 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Examples

			1 divides 2^2-1^1 -> k=2, j=1
2 divides 3^3-1^1 -> k=3, j=1
3 divides 2^2-1^1 -> k=2, j=1
4 divides 4^4-2^2 -> k=4, j=2
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local S,k,v;
      S:= {}:
      for k from 1 do
        v:= k &^ k mod n;
        if member(v,S) then return k fi;
        S:= S union {v}
      od
    end proc:
    map(f, [$1..100]); # Robert Israel, Aug 23 2023
  • Mathematica
    s = Table[n^n, {n, 1, 120}];
    lk = Table[NestWhile[# + 1 &, 1,
       Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1, Length[s]}]
    Table[NestWhile[# + 1 &, 1,
      Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &],
    {j, 1, Length[lk]}]
    (* Peter J. C. Moses, Jan 27 2012 *)

A205561 Least positive integer k such that n divides (2k)! - (2j)! for some j in [1,k-1].

Original entry on oeis.org

2, 2, 3, 3, 4, 3, 5, 3, 4, 4, 2, 3, 8, 5, 4, 4, 10, 4, 4, 4, 5, 2, 4, 3, 4, 8, 6, 5, 3, 4, 5, 5, 4, 10, 5, 4, 20, 4, 8, 4, 11, 5, 10, 4, 4, 4, 5, 4, 6, 4, 10, 8, 6, 6, 4, 5, 8, 3, 13, 4, 8, 5, 5, 5, 8, 4, 16, 10, 4, 5, 7, 4, 4, 20, 4, 8, 7, 8, 11, 4, 6, 11, 22, 5, 10, 10, 3, 4, 5, 4, 8, 4
Offset: 1

Views

Author

Clark Kimberling, Feb 01 2012

Keywords

Comments

For a guide to related sequences, see A204892.
From Robert Israel, Nov 20 2024: (Start)
a(n) <= ceil(A002034(n)/2) + 1.
The last occurrence of k >= 2 in the sequence is a((2*k)! - 2) = k. (End)

Examples

			1 divides (2*2)!-(2*1)! -> k=2, j=1
2 divides (2*2)!-(2*1)! -> k=2, j=1
3 divides (2*3)!-(2*2)! -> k=3, j=2
4 divides (2*3)!-(2*2)! -> k=3, j=2
5 divides (2*4)!-(2*3)! -> k=4, j=3
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local S,j,x;
      S:= {}:
      x:= 1:
      for j from 1 do
        x:=x*2*j*(2*j-1) mod n;
        if member(x,S) then return j fi;
        S:= S union {x}
      od
    end proc:
    map(f, [$1..100]); # Robert Israel, Nov 18 2024
  • Mathematica
    s = Table[(2n)!, {n, 1, 120}];
    lk = Table[NestWhile[# + 1 &, 1,
       Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1, Length[s]}]
    Table[NestWhile[# + 1 &, 1,
      Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &],
    {j, 1, Length[lk]}]
    (* Peter J. C. Moses, Jan 27 2012 *)

A205837 Numbers k for which 2 divides s(k)-s(j) for some j

Original entry on oeis.org

3, 4, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16
Offset: 1

Views

Author

Clark Kimberling, Feb 01 2012

Keywords

Comments

For a guide to related sequences, see A205840.

Examples

			The first six terms match these differences:
s(3)-s(1) = 3-1 = 2
s(4)-s(1) = 5-1 = 4
s(4)-s(3) = 5-3 = 2
s(5)-s(2) = 8-2 = 6
s(6)-s(1) = 13-1 = 12
s(6)-s(3) = 13-3 = 10
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Fibonacci[n + 1]; z1 = 400; z2 = 60;
    f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2];
    Table[s[n], {n, 1, 30}]
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]   (* A204922 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = Delete[w[n], Position[w[n], 0]]
    c = 2; t = d[c]           (* A205556 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2]
    j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2
    Table[k[n], {n, 1, z2}]     (* A205837 *)
    Table[j[n], {n, 1, z2}]     (* A205838 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}](* A205839 *)
    Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}](* A205840 *)

A198293 a(n) = (1/n)*A205406(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3
Offset: 1

Views

Author

Clark Kimberling, Jan 27 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

Extensions

Data section extended up to a(111) by Antti Karttunen, Dec 03 2021
Previous Showing 61-70 of 248 results. Next