A209999
Triangle of coefficients of polynomials u(n,x) jointly generated with A210287; see the Formula section.
Original entry on oeis.org
1, 2, 2, 4, 6, 3, 7, 16, 13, 4, 12, 36, 44, 24, 5, 20, 76, 122, 100, 40, 6, 33, 152, 306, 332, 201, 62, 7, 54, 294, 712, 968, 783, 370, 91, 8, 88, 554, 1573, 2572, 2614, 1666, 637, 128, 9, 143, 1024, 3339, 6392, 7829, 6296, 3277, 1040, 174, 10, 232, 1864
Offset: 1
First five rows:
1
2....2
4....6....3
7....16...13...4
12...36...44...24...5
First three polynomials u(n,x): 1, 2 + 2x, 4 + 6x + 3x^2.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209999 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210287 *)
A210038
Triangle of coefficients of polynomials v(n,x) jointly generated with A210037; see the Formula section.
Original entry on oeis.org
1, 3, 1, 7, 4, 1, 15, 12, 5, 1, 31, 32, 18, 6, 1, 63, 80, 56, 25, 7, 1, 127, 192, 160, 88, 33, 8, 1, 255, 448, 432, 280, 129, 42, 9, 1, 511, 1024, 1120, 832, 450, 180, 52, 10, 1, 1023, 2304, 2816, 2352, 1452, 681, 242, 63, 11, 1, 2047, 5120, 6912, 6400
Offset: 1
First five rows:
1
3....1
7....4....1
15...12...5....1
31...32...18...6...1
First three polynomials v(n,x): 1, 3 + x , 7 + 4x + x^2.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210037 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210038 *)
A210197
Triangle of coefficients of polynomials u(n,x) jointly generated with A210198; see the Formula section.
Original entry on oeis.org
1, 3, 7, 1, 15, 5, 31, 17, 1, 63, 49, 7, 127, 129, 31, 1, 255, 321, 111, 9, 511, 769, 351, 49, 1, 1023, 1793, 1023, 209, 11, 2047, 4097, 2815, 769, 71, 1, 4095, 9217, 7423, 2561, 351, 13, 8191, 20481, 18943, 7937, 1471, 97, 1, 16383, 45057, 47103
Offset: 1
First five rows:
1
3
7....1
15...5
31...17...1
First three polynomials u(n,x): 1, 3, 7 + x.
Essentially the same as the triangle in
A257597.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210197 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210198 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (* A048739 *)
Table[v[n, x] /. x -> 1, {n, 1, z}] (* A005409 *)
Table[u[n, x] /. x -> -1, {n, 1, z}] (* A000217 *)
Table[v[n, x] /. x -> -1, {n, 1, z}] (* A000027 *)
A210204
Triangle of coefficients of polynomials v(n,x) jointly generated with A210203; see the Formula section.
Original entry on oeis.org
1, 3, 2, 7, 8, 2, 15, 24, 12, 2, 31, 64, 48, 16, 2, 63, 160, 160, 80, 20, 2, 127, 384, 480, 320, 120, 24, 2, 255, 896, 1344, 1120, 560, 168, 28, 2, 511, 2048, 3584, 3584, 2240, 896, 224, 32, 2, 1023, 4608, 9216, 10752, 8064, 4032, 1344, 288, 36, 2, 2047
Offset: 1
First five rows:
1
3....2
7....8....2
15...24...12...2
31...64...48...16...2
First three polynomials v(n,x): 1, 3 + 2x , 7 + 8x + 2x^2.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210203 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210204 *)
A210217
Triangle of coefficients of polynomials u(n,x) jointly generated with A210218; see the Formula section.
Original entry on oeis.org
1, 2, 1, 2, 5, 1, 2, 6, 12, 1, 2, 6, 19, 27, 1, 2, 6, 20, 57, 58, 1, 2, 6, 20, 67, 160, 121, 1, 2, 6, 20, 68, 218, 424, 248, 1, 2, 6, 20, 68, 231, 680, 1073, 503, 1, 2, 6, 20, 68, 232, 775, 2028, 2619, 1014, 1, 2, 6, 20, 68, 232, 791, 2543, 5797, 6214, 2037, 1, 2
Offset: 1
First five rows:
1
2...1
2...5...1
2...6...12...1
2...6...19...27...1
First three polynomials u(n,x): 1, 2 + x, 2 + 5x + x^2.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210217 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210218 *)
A210220
T(n, k) = -binomial(2*n-k+2, k+1)*hypergeom([2*n-k+3, 1], [k+2], 2). Triangle read by rows, T(n, k) for 1 <= k <= n.
Original entry on oeis.org
1, 2, 2, 3, 6, 3, 4, 12, 13, 4, 5, 20, 34, 24, 5, 6, 30, 70, 80, 40, 6, 7, 42, 125, 200, 166, 62, 7, 8, 56, 203, 420, 496, 314, 91, 8, 9, 72, 308, 784, 1211, 1106, 553, 128, 9, 10, 90, 444, 1344, 2576, 3108, 2269, 920, 174, 10, 11, 110, 615, 2160, 4956, 7476, 7274, 4352, 1461, 230, 11
Offset: 1
First five rows:
1
2...2
3...6....3
4...12...13...4
5...20...34...24...5
First three polynomials v(n,x): 1, 2 + 2x , 3 + 6x + 3x^2.
-
T := (n,k) -> -binomial(2*n-k+2, k+1)*hypergeom([2*n-k+3, 1], [k+2], 2):
seq(seq(simplify(T(n,k)), k=1..n), n=1..10); # Peter Luschny, Oct 31 2019
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210219 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210220 *)
(* alternate program *)
T[n_,k_]:=Sum[Binomial[2*j+k-2,k-1],{j,1,n-k+1}];Flatten[Table[T[n,k],{n,1,11},{k,1,n}]] (* Detlef Meya, Dec 05 2023 *)
A210221
Triangle of coefficients of polynomials u(n,x) jointly generated with A210596; see the Formula section.
Original entry on oeis.org
1, 2, 3, 2, 5, 4, 4, 8, 10, 8, 8, 13, 20, 24, 16, 16, 21, 40, 52, 56, 32, 32, 34, 76, 116, 128, 128, 64, 64, 55, 142, 240, 312, 304, 288, 128, 128, 89, 260, 488, 688, 800, 704, 640, 256, 256, 144, 470, 964, 1496, 1856, 1984, 1600, 1408, 512, 512, 233, 840
Offset: 1
First five rows:
1;
2;
3, 2;
5, 4, 4;
8, 10, 8, 8;
First three polynomials u(n,x):
1
2
3 + 2x.
From _Philippe Deléham_, Mar 25 2012: (Start)
(1, 1, -1, 0, 0, 0, ...) DELTA (0, 0, 2, 0, 0, ...) begins:
1;
1, 0;
2, 0, 0;
3, 2, 0, 0;
5, 4, 4, 0, 0;
8, 10, 8, 8, 0, 0;
13, 20, 24, 16, 16, 0, 0; (End)
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x];
v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210221 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210596 *)
With[{m = 10}, Rest[CoefficientList[CoefficientList[Series[(1-2*y*x)/(1-x-2*y*x-x^2+2*y*x^2), {x, 0, m}, {y, 0, m}], x], y]]]//Flatten (* G. C. Greubel, Dec 16 2018 *)
T[n_, k_]:= If[k < 0 || k > n, 0, T[n-1, k] + 2*T[n-1, k-1] + T[n-2, k] - 2*T[n-2, k-1]]; T[1, 0] = 1 ; T[2, 0] = 2; T[2, 1] = 0; Join[{1}, Table[T[n, k], {n, 1, 10}, {k, 0, n-2}]//Flatten] (* G. C. Greubel, Dec 17 2018 *)
-
from sympy import Poly
from sympy.abc import x
def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
def v(n, x): return 1 if n==1 else u(n - 1, x) + 2*x*v(n - 1, x)
def a(n): return Poly(u(n, x), x).all_coeffs()[::-1]
for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 27 2017
A210225
Triangle of coefficients of polynomials u(n,x) jointly generated with A210226; see the Formula section.
Original entry on oeis.org
1, 2, 1, 3, 5, 1, 4, 12, 10, 1, 5, 22, 36, 17, 1, 6, 35, 88, 87, 26, 1, 7, 51, 175, 277, 181, 37, 1, 8, 70, 306, 680, 734, 338, 50, 1, 9, 92, 490, 1416, 2196, 1710, 582, 65, 1, 10, 117, 736, 2632, 5402, 6156, 3606, 941, 82, 1, 11, 145, 1053, 4502, 11592
Offset: 1
First five rows:
1
2...1
3...5....1
4...12...10...1
5...22...36...17...1
First three polynomials u(n,x): 1, 2 + x, 3 + 5x + x^2.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210225 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210226 *)
A210226
Triangle of coefficients of polynomials v(n,x) jointly generated with A210225; see the Formula section.
Original entry on oeis.org
1, 2, 3, 3, 9, 5, 4, 18, 24, 7, 5, 30, 66, 51, 9, 6, 45, 140, 189, 94, 11, 7, 63, 255, 505, 457, 157, 13, 8, 84, 420, 1110, 1516, 976, 244, 15, 9, 108, 644, 2142, 3986, 3960, 1896, 359, 17, 10, 135, 936, 3766, 8960, 12338, 9276, 3419, 506, 19, 11, 165
Offset: 1
First five rows:
1
2...3
3...9....5
4...18...24...7
5...30...66...51...9
First three polynomials v(n,x): 1, 2 + 3x , 3 + 9x + 5x^2.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210225 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210226 *)
A210235
Triangle of coefficients of polynomials u(n,x) jointly generated with A210236; see the Formula section.
Original entry on oeis.org
1, 2, 1, 4, 4, 1, 7, 12, 7, 1, 12, 29, 28, 11, 1, 20, 64, 86, 56, 16, 1, 33, 132, 230, 210, 101, 22, 1, 54, 261, 560, 662, 451, 169, 29, 1, 88, 500, 1279, 1860, 1646, 883, 267, 37, 1, 143, 936, 2785, 4819, 5257, 3682, 1611, 403, 46, 1, 232, 1721, 5848
Offset: 1
First five rows:
1
2....1
4....4....1
7....12...7....1
12...29...28...11...1
First three polynomials u(n,x): 1, 2 + x, 4 + 4x + x^2.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210235 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210236 *)
Comments