cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A243497 A243496 sorted into ascending order, with duplicates removed.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 23, 25, 27, 31, 32, 49, 53, 59, 64, 67, 81, 83, 97, 103, 121, 125, 127, 128, 131, 169, 227, 241, 243, 256, 277, 289, 311, 331, 343, 361, 419, 431, 509, 512, 529, 563, 661, 691, 709, 719, 739, 841, 961, 1009, 1024, 1433, 1523, 1619, 1681, 1787, 1849, 1879, 2063
Offset: 0

Views

Author

Antti Karttunen, Jun 07 2014

Keywords

Comments

Matula-codes for trees which are almost "uniform", but which allow cases like 169, 841, 1009, 1681, 1849, ... where there is a special relation between prime index and the exponent. (Cf. the comments at A243496).
Differs from A214577 for the first time at n=31, where A214577(31)=227, while here we have 169 at that position, because it corresponds exactly to that "dual" case mentioned in A057546, in excess to those mentioned in A003238. Note that 169 = 13*13 = p_{2*3}^2.
a(0) = 1 stands for the empty tree.

Crossrefs

Cf. A214577 (a subsequence), A209638, A243494.

A358731 Matula-Goebel numbers of rooted trees whose number of nodes is one more than their node-height.

Original entry on oeis.org

4, 6, 7, 10, 13, 17, 22, 29, 41, 59, 62, 79, 109, 179, 254, 277, 293, 401, 599, 1063, 1418, 1609, 1787, 1913, 2749, 4397, 8527, 10762, 11827, 13613, 15299, 16519, 24859, 42043, 87803
Offset: 1

Views

Author

Gus Wiseman, Dec 01 2022

Keywords

Comments

These are paths with a single extra leaf growing from them.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Node-height is the number of nodes in the longest path from root to leaf.

Examples

			The terms together with their corresponding rooted trees begin:
    4: (oo)
    6: (o(o))
    7: ((oo))
   10: (o((o)))
   13: ((o(o)))
   17: (((oo)))
   22: (o(((o))))
   29: ((o((o))))
   41: (((o(o))))
   59: ((((oo))))
   62: (o((((o)))))
   79: ((o(((o)))))
  109: (((o((o)))))
  179: ((((o(o)))))
  254: (o(((((o))))))
  277: (((((oo)))))
  293: ((o((((o))))))
  401: (((o(((o))))))
  599: ((((o((o))))))
		

Crossrefs

These trees are counted by A289207.
Positions of 1's in A358729.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height.
A055277 counts rooted trees by nodes and leaves.
MG differences: A358580, A358724, A358726, A358729.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Count[MGTree[#],_,{0,Infinity}]==Depth[MGTree[#]]&]

A358727 Matula-Goebel numbers of rooted trees with greater number of leaves (width) than node-height.

Original entry on oeis.org

8, 16, 24, 28, 32, 36, 38, 42, 48, 49, 53, 54, 56, 57, 63, 64, 72, 76, 80, 81, 84, 96, 98, 104, 106, 108, 112, 114, 120, 126, 128, 131, 133, 136, 140, 144, 147, 148, 152, 156, 159, 160, 162, 168, 171, 172, 178, 180, 182, 184, 189, 190, 192, 196, 200, 204, 208
Offset: 1

Views

Author

Gus Wiseman, Dec 01 2022

Keywords

Comments

The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Node-height is the number of nodes in the longest path from root to leaf.

Examples

			The terms together with their corresponding rooted trees begin:
   8: (ooo)
  16: (oooo)
  24: (ooo(o))
  28: (oo(oo))
  32: (ooooo)
  36: (oo(o)(o))
  38: (o(ooo))
  42: (o(o)(oo))
  48: (oooo(o))
  49: ((oo)(oo))
  53: ((oooo))
  54: (o(o)(o)(o))
  56: (ooo(oo))
  57: ((o)(ooo))
  63: ((o)(o)(oo))
  64: (oooooo)
  72: (ooo(o)(o))
  76: (oo(ooo))
		

Crossrefs

Positions of negative terms in A358726.
These trees are counted by A358728.
Differences: A358580, A358724, A358726, A358729.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Depth[MGTree[#]]-1
    				

A358723 Number of n-node rooted trees of edge-height equal to their number of leaves.

Original entry on oeis.org

0, 1, 0, 2, 1, 6, 7, 26, 43, 135, 276, 755, 1769, 4648, 11406, 29762, 75284, 195566, 503165, 1310705, 3402317, 8892807, 23231037, 60906456, 159786040, 420144405, 1105673058, 2914252306, 7688019511, 20304253421, 53667498236, 141976081288, 375858854594, 995728192169
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2022

Keywords

Comments

Edge-height (A109082) is the number of edges in the longest path from root to leaf.

Examples

			The a(1) = 0 through a(7) = 7 trees:
  .  (o)  .  ((oo))  ((o)(o))  (((ooo)))  (((o))(oo))
             (o(o))            ((o(oo)))  (((o)(oo)))
                               ((oo(o)))  ((o)((oo)))
                               (o((oo)))  ((o)(o(o)))
                               (o(o(o)))  ((o(o)(o)))
                               (oo((o)))  (o((o)(o)))
                                          (o(o)((o)))
		

Crossrefs

For internals instead of leaves: A011782, ranked by A209638.
For internals instead of edge-height: A185650 aerated, ranked by A358578.
For node-height: A358589 (square trees), ranked by A358577, ordered A358590.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
A358575 counts rooted trees by nodes and internals, ordered A090181.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,{},{-2}]==Depth[#]-2&]],{n,1,10}]
  • PARI
    \\ Needs R(n,f) defined in A358589.
    seq(n) = {Vec(R(n, (h,p)->polcoef(p,h-1,y)), -n)} \\ Andrew Howroyd, Jan 01 2023

Extensions

Terms a(19) and beyond from Andrew Howroyd, Jan 01 2023
Previous Showing 11-14 of 14 results.