cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A139594 Number of different n X n symmetric matrices with nonnegative entries summing to 4. Also number of symmetric oriented graphs with 4 arcs on n points.

Original entry on oeis.org

0, 1, 9, 39, 116, 275, 561, 1029, 1744, 2781, 4225, 6171, 8724, 11999, 16121, 21225, 27456, 34969, 43929, 54511, 66900, 81291, 97889, 116909, 138576, 163125, 190801, 221859, 256564, 295191, 338025, 385361, 437504, 494769, 557481, 625975, 700596
Offset: 0

Views

Author

Marc A. A. van Leeuwen, Jun 12 2008

Keywords

Comments

a(n) is also the number of semistandard Young tableaux over all partitions of 4 with maximal element <= n. - Alois P. Heinz, Mar 22 2012
Starting from 1 the partial sums give A244864. - J. M. Bergot, Sep 17 2016

Examples

			From _Michael B. Porter_, Sep 18 2016: (Start)
The nine 2 X 2 matrices summing to 4 are:
4 0  3 0  2 0  1 0  0 0  2 1  1 1  0 1  0 2
0 0  0 1  0 2  0 3  0 4  1 0  1 1  1 2  2 0
(End)
		

Crossrefs

For 3 in place of 4 this gives A005900.
Row n=4 of A210391. - Alois P. Heinz, Mar 22 2012
Partial sums of A063489.

Programs

  • Maple
    dd := proc(n,m) coeftayl(1/((1-X)^m*(1-X^2)^binomial(m,2)),X=0,n); seq(dd(4,m),m=0..N);
  • Mathematica
    gf[k_] := 1/((1-x)^k (1-x^2)^(k(k-1)/2));
    T[n_, k_] := SeriesCoefficient[gf[k], {x, 0, n}];
    a[k_] := T[4, k];
    a /@ Range[0, 40] (* Jean-François Alcover, Nov 07 2020 *)

Formula

a(n) = coefficient of x^4 in 1/((1-x)^n * (1-x^2)^binomial(n,2)).
a(n) = (n^2*(7+5*n^2))/12. G.f.: x*(1+x)*(1+3*x+x^2)/(1-x)^5. [Colin Barker, Mar 18 2012]

A181480 a(n) has generating function 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)) for k=8.

Original entry on oeis.org

1, 8, 64, 344, 1744, 7400, 29632, 106808, 366088, 1168008, 3570240, 10347864, 28915056, 77493096, 201249216, 505130808, 1233655332, 2927916264, 6784208704, 15338678264, 33950726992, 73557910088, 156378379456, 326236930136, 669101503096, 1349416997864
Offset: 0

Views

Author

Wouter Meeussen, Oct 24 2010

Keywords

Comments

a(n-1,k) is conjectured to also be the count of monomials (or terms) in the Schur polynomials of k variables and degree n, summed over all partitions of n in at most k parts (zero-padded to length k).

Crossrefs

For k=2 (two variables): A002620, k=3: A038163, k=4: A054498, k=5: A181477, k=6: A181478, k=7: A181479.
Column k=8 of A210391. - Alois P. Heinz, Mar 22 2012

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x)^8/(1-x^2)^28,{x,0,25}],x]

A210427 Number of semistandard Young tableaux over all partitions of 5 with maximal element <= n.

Original entry on oeis.org

0, 1, 12, 69, 260, 751, 1812, 3843, 7400, 13221, 22252, 35673, 54924, 81731, 118132, 166503, 229584, 310505, 412812, 540493, 698004, 890295, 1122836, 1401643, 1733304, 2125005, 2584556, 3120417, 3741724, 4458315, 5280756, 6220367, 7289248, 8500305, 9867276
Offset: 0

Views

Author

Alois P. Heinz, Mar 21 2012

Keywords

Crossrefs

Row n=5 of A210391.

Programs

  • Maple
    a:= n-> n*(12+(35+13*n^2)*n^2)/60:
    seq(a(n), n=0..40);
  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,1,12,69,260,751},40] (* Harvey P. Dale, Sep 20 2020 *)

Formula

a(n) = n*(12+(35+13*n^2)*n^2)/60.
G.f.: x*(12*x^2+6*x^3+x^4+1+6*x)/(x-1)^6.

A210428 Number of semistandard Young tableaux over all partitions of 6 with maximal element <= n.

Original entry on oeis.org

0, 1, 16, 119, 560, 1955, 5552, 13573, 29632, 59229, 110320, 193963, 325040, 523055, 813008, 1226345, 1801984, 2587417, 3639888, 5027647, 6831280, 9145115, 12078704, 15758381, 20328896, 25955125, 32823856, 41145651, 51156784, 63121255, 77332880, 94117457
Offset: 0

Views

Author

Alois P. Heinz, Mar 21 2012

Keywords

Comments

a(n) is the number of semistandard Young tableaux over all partitions of 6 with maximal element <= n.

Crossrefs

Row n=6 of A210391.

Programs

  • Maple
    a:= n-> n^2*(76+(85+19*n^2)*n^2)/180:
    seq(a(n), n=0..40);

Formula

a(n) = n^2*(76+(85+19*n^2)*n^2)/180.
G.f.: -x*(x+1)*(x^4+8*x^3+20*x^2+8*x+1)/(x-1)^7.

A210429 Number of semistandard Young tableaux over all partitions of 7 with maximal element <= n.

Original entry on oeis.org

0, 1, 20, 189, 1100, 4615, 15372, 43219, 106808, 238581, 491380, 946913, 1726308, 3002987, 5018092, 8098695, 12679024, 19324937, 28761876, 41906533, 59902460, 84159855, 116399756, 158702875, 213563304, 283947325, 373357556, 485902665, 626372884, 800321555
Offset: 0

Views

Author

Alois P. Heinz, Mar 21 2012

Keywords

Crossrefs

Row n=7 of A210391.

Programs

  • Maple
    a:= n-> n*(180+(637+(385+58*n^2)*n^2)*n^2)/1260:
    seq(a(n), n=0..40);
  • Mathematica
    CoefficientList[Series[x (x+1)^2(x^4+10x^3+36x^2+10x+1)/(x-1)^8,{x,0,40}],x] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{0,1,20,189,1100,4615,15372,43219},40] (* Harvey P. Dale, Jan 29 2023 *)

Formula

a(n) = n*(180+(637+(385+58*n^2)*n^2)*n^2)/1260.
G.f.: x*(x+1)^2*(x^4+10*x^3+36*x^2+10*x+1)/(x-1)^8.

A210430 Number of semistandard Young tableaux over all partitions of 8 with maximal element <= n.

Original entry on oeis.org

0, 1, 25, 294, 2090, 10460, 40677, 131131, 366088, 912519, 2075965, 4381168, 8683962, 16321682, 29310113, 50595765, 84373024, 136476493, 214859601, 330171322, 496443610, 731902920, 1059919949, 1510112495, 2119617096, 2934545875, 4011645781, 5420178180
Offset: 0

Views

Author

Alois P. Heinz, Mar 21 2012

Keywords

Crossrefs

Row n=8 of A210391.

Programs

  • Maple
    a:= n-> n^2*(n^2+3)*(1124+(1205+191*n^2)*n^2)/10080:
    seq(a(n), n=0..40);

Formula

a(n) = n^2*(n^2+3)*(1124+(1205+191*n^2)*n^2)/10080.
G.f.: -x*(x+1)*(x^6+15*x^5+90*x^4+170*x^3+90*x^2+15*x+1)/(x-1)^9.

A210431 Number of semistandard Young tableaux over all partitions of 9 with maximal element <= n.

Original entry on oeis.org

0, 1, 30, 434, 3740, 22220, 100562, 370909, 1168008, 3245311, 8148590, 18821968, 40542228, 82300842, 158779362, 293092635, 520505744, 893364637, 1487517086, 2410539918, 3812130380, 5897064040, 8941168786, 13310814265, 19486468504, 28090928475, 39922889006
Offset: 0

Views

Author

Alois P. Heinz, Mar 21 2012

Keywords

Crossrefs

Row n=9 of A210391.

Programs

  • Maple
    a:= n-> n*(10080+(40484+(31395+(8106+655*n^2)*n^2)*n^2)*n^2)/90720:
    seq(a(n), n=0..40);

Formula

a(n) = n*(10080+(40484+(31395+(8106+655*n^2)*n^2)*n^2)*n^2)/90720.
G.f.: x*(x^8+20*x^7+179*x^6+630*x^5+960*x^4+630*x^3+179*x^2+20*x+1) / (x-1)^10.

A210432 Number of semistandard Young tableaux over all partitions of 10 with maximal element <= n.

Original entry on oeis.org

0, 1, 36, 630, 6512, 45628, 239316, 1007083, 3570240, 11042199, 30569012, 77221232, 180646896, 395884866, 820217412, 1618520277, 3060257024, 5572071725, 9810869508, 16763347626, 27879160048, 45246275592, 71818632820, 111707913791, 170553162816, 255984075075
Offset: 0

Views

Author

Alois P. Heinz, Mar 21 2012

Keywords

Crossrefs

Row n=10 of A210391.

Programs

  • Maple
    a:= n-> n^2* (126432+ (206020+ (101031+ (18930+ 1187*n^2) *n^2) *n^2) *n^2)/ 453600:
    seq(a(n), n=0..40);

Formula

a(n) = n^2*(126432+(206020+(101031+(18930+1187*n^2)*n^2)*n^2)*n^2)/453600.
G.f.: -x*(x+1)*(x^8 +24*x^7 +265*x^6 +1132*x^5 +1904*x^4 +1132*x^3 +265*x^2 +24*x+1) / (x-1)^11.

A262030 Partition array in Abramowitz-Stegun order: Schur functions evaluated at 1.

Original entry on oeis.org

1, 3, 1, 10, 8, 1, 35, 45, 20, 15, 1, 126, 224, 175, 126, 75, 24, 1, 462, 1050, 1134, 490, 840, 896, 175, 280, 189, 35, 1, 1716, 4752, 6468, 4704, 4950, 7350, 3528, 2646, 2400, 2940, 784, 540, 392, 48, 1, 6435, 21021, 34320, 33264, 13860, 27027, 50688, 41580, 25872, 15876, 17325, 29700, 15120, 14700, 1764, 5775, 7680, 2352, 945, 720, 63, 1
Offset: 1

Views

Author

Wolfdieter Lang, Oct 15 2015

Keywords

Comments

The length of row n >= 1 of this irregular triangle is A000041(n) (partition numbers).
The Abramowitz-Stegun (A-St) order of the partitions is used.
For Schur functions (or polynomials) s^(lambda) = s(lambda(n, k);x[1], ..., x[n]) defined for the k-th partition of n (here in A-St order) see, e.g., the Macdonald reference, ch. I, 3. S-functions, p. 23, and Wikipedia reference. For the combinatorial interpretation of Schur functions see the Stanley reference.
The partition lambda(n,k) has m = m(n,k) nonincreasing parts lamda_j, j = 1..m, (the reverse of the partitions given in A-St) and n-m 0's are appended to obtain a length n partition. E.g., lambda(4, 3) = (2, 2, 0, 0) with m = 2.
The Schur function s(lambda(n, k),1,...,1) (n 1's) gives the number of semistandard Young tableaux (SSYT) for the Young (Ferrers) diagram of lambda(n, k) (forgetting about trailing 0's) with the box numbers taken out of the set {1, 2, ..., n} where the rows increase weakly and the columns increase strictly. See the Stanley reference pp. 309 and 310, and the example below.
The sum of the row numbers give A209673: 1, 4, 19, 116, 751, 5552, 43219, 366088, ...
Conjecture: The sum of the squares of row numbers give A054688: 1, 10, 165, 3876, ... = binomial(n^2+n-1, n). - Wouter Meeussen, Sep 25 2016

Examples

			The irregular triangle begins (commas separate entries for partitions of like numbers of parts in A-St order):
n\k  1     2    3    4    5   6   7    8   9 10 11
1:   1
2:   3,    1
3:  10,    8,   1
4:  35,   45   20,  15,   1
5: 126,  224  175, 126   75, 24,  1
6: 462, 1050 1134  490, 840 896 175, 280 189,35, 1
...
Row 7: 1716, 4752 6468 4704, 4950 7350 3528 2646, 2400 2940 784, 540 392, 48, 1;
Row 8: 6435, 21021 34320 33264 13860, 27027 50688 41580 25872 15876, 17325 29700 15120 14700 1764, 5775 7680 2352, 945 720, 63, 1.
...
n = 4, k = 4: lambda(4, 4) = (2,1,1,0) (m=3), SSYT (we use semicolons to separate the three rows): [1,1;2;3], [1,1;2;4], [1,1;3;4],
  [1,2;2;3], [1,2;2;4], [1,2;3;4],
  [1,3;2;3], [1,3;2;4], [1,3;3;4],
  [1,4;2;3], [1,4;2;4], [1,4;3;4],
  [2,2;3;4], [2,3;3;4], [2,4;3;4], hence a(4, 4) = 15. The three tableaux with distinct numbers are standard Young tableaux and give A117506(4, 4) = 3.
		

References

  • Macdonald, I. G., Symmetric functions and Hall polynomials, Oxford University Press, 1979.
  • Stanley, R. P., Enumerative Combinatorics, Vol. 2, Cambridge University Press 1999, sect. 7.30, pp. 308-316.

Crossrefs

Cf. A054688, A117506, A209673, A210391 (in the diagonal).

Formula

a(n, k) = Det_{i,j=1..n} x[i]^(lambda_j + n-j) / Det_{i,j=1..n} x[i]^(n-j), evaluated at x[i] = 1 for i = 1..n (after division). The denominator is the Vandermonde determinant, the numerator an alternant. See, e.g., the Macdonald reference p. 24.

A296560 Number of normal semistandard Young tableaux whose shape is the conjugate of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 4, 6, 6, 1, 12, 1, 8, 16, 8, 1, 28, 1, 24, 30, 10, 1, 32, 22, 12, 44, 40, 1, 96, 1, 16, 48, 14, 68, 96, 1, 16, 70, 80, 1, 220, 1, 60, 204, 18, 1, 80, 90, 168, 96, 84, 1, 224, 146, 160, 126, 20, 1, 400, 1, 22, 584, 32, 264, 416, 1, 112, 160
Offset: 1

Views

Author

Gus Wiseman, Feb 15 2018

Keywords

Comments

A tableau is normal if its entries span an initial interval of positive integers. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[n===1,1,Sum[a[n/q*Times@@Cases[FactorInteger[q],{p_,k_}:>If[p===2,1,NextPrime[p,-1]^k]]],{q,Rest[Divisors[n]]}]];
    Array[a,100]
Previous Showing 11-20 of 20 results.