A139594
Number of different n X n symmetric matrices with nonnegative entries summing to 4. Also number of symmetric oriented graphs with 4 arcs on n points.
Original entry on oeis.org
0, 1, 9, 39, 116, 275, 561, 1029, 1744, 2781, 4225, 6171, 8724, 11999, 16121, 21225, 27456, 34969, 43929, 54511, 66900, 81291, 97889, 116909, 138576, 163125, 190801, 221859, 256564, 295191, 338025, 385361, 437504, 494769, 557481, 625975, 700596
Offset: 0
From _Michael B. Porter_, Sep 18 2016: (Start)
The nine 2 X 2 matrices summing to 4 are:
4 0 3 0 2 0 1 0 0 0 2 1 1 1 0 1 0 2
0 0 0 1 0 2 0 3 0 4 1 0 1 1 1 2 2 0
(End)
For 3 in place of 4 this gives
A005900.
-
dd := proc(n,m) coeftayl(1/((1-X)^m*(1-X^2)^binomial(m,2)),X=0,n); seq(dd(4,m),m=0..N);
-
gf[k_] := 1/((1-x)^k (1-x^2)^(k(k-1)/2));
T[n_, k_] := SeriesCoefficient[gf[k], {x, 0, n}];
a[k_] := T[4, k];
a /@ Range[0, 40] (* Jean-François Alcover, Nov 07 2020 *)
A181480
a(n) has generating function 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)) for k=8.
Original entry on oeis.org
1, 8, 64, 344, 1744, 7400, 29632, 106808, 366088, 1168008, 3570240, 10347864, 28915056, 77493096, 201249216, 505130808, 1233655332, 2927916264, 6784208704, 15338678264, 33950726992, 73557910088, 156378379456, 326236930136, 669101503096, 1349416997864
Offset: 0
-
CoefficientList[Series[1/(1-x)^8/(1-x^2)^28,{x,0,25}],x]
A210427
Number of semistandard Young tableaux over all partitions of 5 with maximal element <= n.
Original entry on oeis.org
0, 1, 12, 69, 260, 751, 1812, 3843, 7400, 13221, 22252, 35673, 54924, 81731, 118132, 166503, 229584, 310505, 412812, 540493, 698004, 890295, 1122836, 1401643, 1733304, 2125005, 2584556, 3120417, 3741724, 4458315, 5280756, 6220367, 7289248, 8500305, 9867276
Offset: 0
-
a:= n-> n*(12+(35+13*n^2)*n^2)/60:
seq(a(n), n=0..40);
-
LinearRecurrence[{6,-15,20,-15,6,-1},{0,1,12,69,260,751},40] (* Harvey P. Dale, Sep 20 2020 *)
A210428
Number of semistandard Young tableaux over all partitions of 6 with maximal element <= n.
Original entry on oeis.org
0, 1, 16, 119, 560, 1955, 5552, 13573, 29632, 59229, 110320, 193963, 325040, 523055, 813008, 1226345, 1801984, 2587417, 3639888, 5027647, 6831280, 9145115, 12078704, 15758381, 20328896, 25955125, 32823856, 41145651, 51156784, 63121255, 77332880, 94117457
Offset: 0
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Wikipedia, Young tableau
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
A210429
Number of semistandard Young tableaux over all partitions of 7 with maximal element <= n.
Original entry on oeis.org
0, 1, 20, 189, 1100, 4615, 15372, 43219, 106808, 238581, 491380, 946913, 1726308, 3002987, 5018092, 8098695, 12679024, 19324937, 28761876, 41906533, 59902460, 84159855, 116399756, 158702875, 213563304, 283947325, 373357556, 485902665, 626372884, 800321555
Offset: 0
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Wikipedia, Young tableau
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
-
a:= n-> n*(180+(637+(385+58*n^2)*n^2)*n^2)/1260:
seq(a(n), n=0..40);
-
CoefficientList[Series[x (x+1)^2(x^4+10x^3+36x^2+10x+1)/(x-1)^8,{x,0,40}],x] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{0,1,20,189,1100,4615,15372,43219},40] (* Harvey P. Dale, Jan 29 2023 *)
A210430
Number of semistandard Young tableaux over all partitions of 8 with maximal element <= n.
Original entry on oeis.org
0, 1, 25, 294, 2090, 10460, 40677, 131131, 366088, 912519, 2075965, 4381168, 8683962, 16321682, 29310113, 50595765, 84373024, 136476493, 214859601, 330171322, 496443610, 731902920, 1059919949, 1510112495, 2119617096, 2934545875, 4011645781, 5420178180
Offset: 0
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Wikipedia, Young tableau
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
A210431
Number of semistandard Young tableaux over all partitions of 9 with maximal element <= n.
Original entry on oeis.org
0, 1, 30, 434, 3740, 22220, 100562, 370909, 1168008, 3245311, 8148590, 18821968, 40542228, 82300842, 158779362, 293092635, 520505744, 893364637, 1487517086, 2410539918, 3812130380, 5897064040, 8941168786, 13310814265, 19486468504, 28090928475, 39922889006
Offset: 0
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Wikipedia, Young tableau
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
A210432
Number of semistandard Young tableaux over all partitions of 10 with maximal element <= n.
Original entry on oeis.org
0, 1, 36, 630, 6512, 45628, 239316, 1007083, 3570240, 11042199, 30569012, 77221232, 180646896, 395884866, 820217412, 1618520277, 3060257024, 5572071725, 9810869508, 16763347626, 27879160048, 45246275592, 71818632820, 111707913791, 170553162816, 255984075075
Offset: 0
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Wikipedia, Young tableau
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
A262030
Partition array in Abramowitz-Stegun order: Schur functions evaluated at 1.
Original entry on oeis.org
1, 3, 1, 10, 8, 1, 35, 45, 20, 15, 1, 126, 224, 175, 126, 75, 24, 1, 462, 1050, 1134, 490, 840, 896, 175, 280, 189, 35, 1, 1716, 4752, 6468, 4704, 4950, 7350, 3528, 2646, 2400, 2940, 784, 540, 392, 48, 1, 6435, 21021, 34320, 33264, 13860, 27027, 50688, 41580, 25872, 15876, 17325, 29700, 15120, 14700, 1764, 5775, 7680, 2352, 945, 720, 63, 1
Offset: 1
The irregular triangle begins (commas separate entries for partitions of like numbers of parts in A-St order):
n\k 1 2 3 4 5 6 7 8 9 10 11
1: 1
2: 3, 1
3: 10, 8, 1
4: 35, 45 20, 15, 1
5: 126, 224 175, 126 75, 24, 1
6: 462, 1050 1134 490, 840 896 175, 280 189,35, 1
...
Row 7: 1716, 4752 6468 4704, 4950 7350 3528 2646, 2400 2940 784, 540 392, 48, 1;
Row 8: 6435, 21021 34320 33264 13860, 27027 50688 41580 25872 15876, 17325 29700 15120 14700 1764, 5775 7680 2352, 945 720, 63, 1.
...
n = 4, k = 4: lambda(4, 4) = (2,1,1,0) (m=3), SSYT (we use semicolons to separate the three rows): [1,1;2;3], [1,1;2;4], [1,1;3;4],
[1,2;2;3], [1,2;2;4], [1,2;3;4],
[1,3;2;3], [1,3;2;4], [1,3;3;4],
[1,4;2;3], [1,4;2;4], [1,4;3;4],
[2,2;3;4], [2,3;3;4], [2,4;3;4], hence a(4, 4) = 15. The three tableaux with distinct numbers are standard Young tableaux and give A117506(4, 4) = 3.
- Macdonald, I. G., Symmetric functions and Hall polynomials, Oxford University Press, 1979.
- Stanley, R. P., Enumerative Combinatorics, Vol. 2, Cambridge University Press 1999, sect. 7.30, pp. 308-316.
A296560
Number of normal semistandard Young tableaux whose shape is the conjugate of the integer partition with Heinz number n.
Original entry on oeis.org
1, 1, 1, 2, 1, 4, 1, 4, 6, 6, 1, 12, 1, 8, 16, 8, 1, 28, 1, 24, 30, 10, 1, 32, 22, 12, 44, 40, 1, 96, 1, 16, 48, 14, 68, 96, 1, 16, 70, 80, 1, 220, 1, 60, 204, 18, 1, 80, 90, 168, 96, 84, 1, 224, 146, 160, 126, 20, 1, 400, 1, 22, 584, 32, 264, 416, 1, 112, 160
Offset: 1
Cf.
A000085,
A001222,
A056239,
A063834,
A112798,
A122111,
A138178,
A153452,
A191714,
A210391,
A228125,
A296150,
A296188,
A299202.
-
a[n_]:=If[n===1,1,Sum[a[n/q*Times@@Cases[FactorInteger[q],{p_,k_}:>If[p===2,1,NextPrime[p,-1]^k]]],{q,Rest[Divisors[n]]}]];
Array[a,100]
Comments