cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A246487 Numbers x such that sigma(x) + sigma(R(x)) = sigma(x + R(x)), where R(x) is the digit reversal of x and sigma(x) is the sum of the divisors of x.

Original entry on oeis.org

78, 87, 104, 401, 1144, 2072, 2178, 2702, 4411, 7038, 7348, 7878, 8307, 8437, 8712, 8787, 11144, 11544, 12584, 15834, 20710, 20913, 21476, 21978, 22164, 26070, 31902, 43851, 44111, 44511, 46122, 48521, 66649, 67412, 87912, 94666, 102786, 122584, 122784, 126984
Offset: 1

Views

Author

Paolo P. Lava, Aug 27 2014

Keywords

Examples

			x = 15834 -> R(x) = 43851 and sigma(15834) + sigma(43851) = 40320 + 59904 = 100224 = sigma(15834 + 43851)= sigma(59685).
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,k,n;
    for n from 1 to q do a:=n; b:=0;
    for k from 1 to ilog10(n)+1 do b:=10*b+(a mod 10); a:=trunc(a/10);
    od; if sigma(n)+sigma(b)=sigma(n+b) then print(n); fi;
    od; end: P(10^6);
  • Mathematica
    Select[Range[130000],DivisorSigma[1,#]+DivisorSigma[1,IntegerReverse[#]] == DivisorSigma[1,#+IntegerReverse[#]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 27 2017 *)
  • PARI
    isok(n) = rn = subst(Polrev(digits(n)), x, 10); sigma(n + rn) == sigma(n) + sigma(rn); \\ Michel Marcus, Aug 29 2014

A218981 Numbers n for which sigma(n) = sigma(w) + sigma(x) + sigma(y) + sigma(z), where n = w + x + y + z, with w, x, y, z all positive.

Original entry on oeis.org

5, 9, 14, 15, 20, 21, 22, 25, 26, 27, 28, 32, 33, 34, 35, 38, 39, 40, 42, 44, 45, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 64, 65, 66, 68, 69, 70, 74, 75, 76, 77, 78, 80, 81, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100
Offset: 1

Views

Author

Jon Perry, Nov 08 2012

Keywords

Comments

Conjecture: This sequence is infinite.

Examples

			1 + 1 + 3 + 4 = 9 and sigma(1) + sigma(1) + sigma(3) + sigma(4) = 1 + 1 + 4 + 7 = 13 = sigma(9).
		

Crossrefs

Programs

  • JavaScript
    function divisorSum(n) {
    c=0;
    for (i=1;i<=n;i++) if (n%i==0) c+=i;
    return c;
    }
    ds=new Array();
    for (j=1;j<401;j++) ds[j]=divisorSum(j);
    a=new Array();
    ac=0;
    for (j=1;j<100;j++)
    for (k=1;k<=j;k++)
    for (m=1;m<=k;m++)
    for (n=1;n<=m;n++)
    if (ds[j]+ds[k]+ds[m]+ds[n]==ds[j+k+m+n]) a[ac++]=j+k+m+n;
    a.sort(function(a, b) {return a-b;});
    i=0;
    while(i++
    				

A386205 Numbers k for which a solution to sigma_2(x) + sigma_2(k-x) = sigma_2(k) in positive integers exists.

Original entry on oeis.org

100, 155, 434, 465, 639, 700, 783, 866, 875, 1085, 1100, 1300, 1395, 1700, 1705, 1900, 2015, 2170, 2300, 2625, 2900, 3100, 3255, 3565, 3700, 4100, 4123, 4185, 4300, 4473, 4495, 4700, 4774, 4900, 5115, 5300, 5642, 5735, 5900, 6045, 6062, 6100, 6355, 6665, 6700, 7100
Offset: 1

Views

Author

Felix Huber, Jul 24 2025

Keywords

Comments

Since sigma_2(n) is multiplicative, for every prime p>5, 100*p is a term. In other words, for every prime p>5, sigma_2(100*p) = sigma_2(4)*sigma_2(p) + sigma_2(96)*sigma_2(p). - Ivan N. Ianakiev, Jul 29 2025

Examples

			100 is a term because sigma_2(4) + sigma_2(96) = 21 + 13650 = 13671 = sigma_2(100).
465 is a term because sigma_2(57) + sigma_2(408) = 3620 + 246500 = 250120 = sigma_2(465).
		

Crossrefs

Programs

  • Maple
    with(NumberTheory):
    A:=proc(n)
        option remember;
        local k,x;
        if n=1 then
            100
        else
            for k from procname(n-1)+1 do
                for x to k/2 do
                    if sigma[2](x)+sigma[2](k-x)=sigma[2](k) then
                        return k
                    fi
                od
            od
        fi;
    end proc;
    seq(A(n),n=1..5);
  • Mathematica
    f[n_]:=Select[Range[n/2],DivisorSigma[2,#]==DivisorSigma[2,n]-DivisorSigma[2,n-#]&]; Select[Range[4100],f[#]!={}&] (* Ivan N. Ianakiev, Jul 29 2025 *)
  • PARI
    isok(k) = my(sk2=sigma(k,2)); for (i=1, k-1, if (sigma(i,2) + sigma(k-i,2) == sk2, return(1))); \\ Michel Marcus, Jul 29 2025
Previous Showing 11-13 of 13 results.