A246487 Numbers x such that sigma(x) + sigma(R(x)) = sigma(x + R(x)), where R(x) is the digit reversal of x and sigma(x) is the sum of the divisors of x.
78, 87, 104, 401, 1144, 2072, 2178, 2702, 4411, 7038, 7348, 7878, 8307, 8437, 8712, 8787, 11144, 11544, 12584, 15834, 20710, 20913, 21476, 21978, 22164, 26070, 31902, 43851, 44111, 44511, 46122, 48521, 66649, 67412, 87912, 94666, 102786, 122584, 122784, 126984
Offset: 1
Examples
x = 15834 -> R(x) = 43851 and sigma(15834) + sigma(43851) = 40320 + 59904 = 100224 = sigma(15834 + 43851)= sigma(59685).
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..100
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,k,n; for n from 1 to q do a:=n; b:=0; for k from 1 to ilog10(n)+1 do b:=10*b+(a mod 10); a:=trunc(a/10); od; if sigma(n)+sigma(b)=sigma(n+b) then print(n); fi; od; end: P(10^6);
-
Mathematica
Select[Range[130000],DivisorSigma[1,#]+DivisorSigma[1,IntegerReverse[#]] == DivisorSigma[1,#+IntegerReverse[#]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 27 2017 *)
-
PARI
isok(n) = rn = subst(Polrev(digits(n)), x, 10); sigma(n + rn) == sigma(n) + sigma(rn); \\ Michel Marcus, Aug 29 2014
Comments