A212067
Number of (w,x,y,z) with all terms in {1,...,n} and w^3 = x*y*z.
Original entry on oeis.org
0, 1, 2, 3, 10, 11, 12, 13, 26, 45, 46, 47, 60, 61, 62, 63, 88, 89, 120, 121, 128, 129, 130, 131, 162, 199, 200, 255, 262, 263, 264, 265, 332, 333, 334, 335, 402, 403, 404, 405, 436, 437, 438, 439, 446, 477, 478, 479, 540, 601, 674, 675, 682, 683, 786
Offset: 0
G.f. = x + 2*x^2 + 3*x^3 + 10*x^4 + 11*x^5 + 12*x^6 + 13*x^7 + 26*x^8 + ...
a(4) counts these ten 4-tuples:
(1,1,1,1), (2,2,2,2), (3,3,3,3), (4,4,4,4),
(2,1,2,4), (2,1,4,2), (2,2,1,4), (2,2,4,1),
(2,4,1,2), (2,4,2,1).
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w^3 == x*y*z, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 60]] (* A212067 *)
(* Peter J. C. Moses, Apr 13 2012 *)
a[ n_] := Length@FindInstance[ w^3 == x y z && 0 < w <= n && 0 < x <= n && 0 < y <= n && 0 < z <= n, {w, x, y, z}, Integers, 10^9]; (* Michael Somos, Nov 26 2016 *)
A212068
Number of (w,x,y,z) with all terms in {1,...,n} and 2w=x+y+z.
Original entry on oeis.org
0, 0, 3, 10, 25, 49, 86, 137, 206, 294, 405, 540, 703, 895, 1120, 1379, 1676, 2012, 2391, 2814, 3285, 3805, 4378, 5005, 5690, 6434, 7241, 8112, 9051, 10059, 11140, 12295, 13528, 14840, 16235, 17714, 19281, 20937, 22686, 24529, 26470, 28510, 30653, 32900
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[2 w == x + y + z, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 50]] (* A212068 *)
FindLinearRecurrence[%]
(* Peter J. C. Moses, Apr 13 2012 *)
LinearRecurrence[{3, -2, -2, 3, -1},{0, 0, 3, 10, 25},42] (* Ray Chandler, Aug 02 2015 *)
-
concat(vector(2), Vec(x^2*(3 + x + x^2) / ((1 - x)^4*(1 + x)) + O(x^40))) \\ Colin Barker, Dec 02 2017
A212088
Number of (w,x,y,z) with all terms in {1,...,n} and w
Original entry on oeis.org
0, 0, 7, 36, 117, 292, 612, 1143, 1963, 3159, 4833, 7099, 10080, 13914, 18751, 24750, 32085, 40942, 51516, 64017, 78667, 95697, 115353, 137893, 163584, 192708, 225559, 262440, 303669, 349576, 400500, 456795, 518827, 586971, 661617
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[3 w < x + y + z, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 50]] (* A212088 *)
FindLinearRecurrence[%]
(* Peter J. C. Moses, Apr 13 2012 *)
LinearRecurrence[{4, -6, 5, -5, 6, -4, 1},{0, 0, 7, 36, 117, 292, 612},35] (* Ray Chandler, Aug 02 2015 *)
A212091
Number of (w,x,y,z) with all terms in {1,...,n} and w^2=x^2+y^2+z^2.
Original entry on oeis.org
0, 0, 0, 3, 3, 3, 6, 12, 12, 24, 24, 33, 36, 42, 48, 63, 63, 72, 84, 99, 99, 132, 141, 159, 162, 174, 180, 219, 225, 243, 258, 282, 282, 330, 339, 369, 381, 405, 420, 465, 465, 492, 525, 558, 567, 627, 645, 681, 684, 732, 744, 804, 810, 846, 885, 930
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w^2 == x^2 + y^2 + z^2, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 50]] (* A212091 *)
%/3 (* integers *)
(* Peter J. C. Moses, Apr 13 2012 *)
A212092
Number of (w,x,y,z) with all terms in {1,...,n} and w^2
Original entry on oeis.org
0, 1, 15, 73, 231, 562, 1155, 2133, 3632, 5801, 8830, 12907, 18264, 25131, 33766, 44461, 57524, 73274, 92043, 114213, 140173, 170289, 205057, 244884, 290251, 341658, 399594, 464582, 537200, 618046, 707665, 806727, 915828, 1035607
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w^2 < x^2 + y^2 + z^2, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 50]] (* A212092 *)
(* Peter J. C. Moses, Apr 13 2012 *)
A212093
Number of (w,x,y,z) with all terms in {1,...,n} and w^2<=x^2+y^2+z^2.
Original entry on oeis.org
0, 1, 15, 76, 234, 565, 1161, 2145, 3644, 5825, 8854, 12940, 18300, 25173, 33814, 44524, 57587, 73346, 92127, 114312, 140272, 170421, 205198, 245043, 290413, 341832, 399774, 464801, 537425, 618289, 707923, 807009, 916110, 1035937
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w^2 <= x^2 + y^2 + z^2, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 50]] (* A212093 *)
(* Peter J. C. Moses, Apr 13 2012 *)
A212094
Number of (w,x,y,z) with all terms in {1,...,n} and w^2>x^2+y^2+z^2.
Original entry on oeis.org
0, 0, 1, 5, 22, 60, 135, 256, 452, 736, 1146, 1701, 2436, 3388, 4602, 6101, 7949, 10175, 12849, 16009, 19728, 24060, 29058, 34798, 41363, 48793, 57202, 66640, 77231, 88992, 102077, 116512, 132466, 149984, 169206, 190205, 213109, 238015
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w^2 > x^2 + y^2 + z^2, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 50]] (* A212094 *)
(* Peter J. C. Moses, Apr 13 2012 *)
A212095
Number of (w,x,y,z) with all terms in {1,...,n} and w^2>=x^2+y^2+z^2.
Original entry on oeis.org
0, 0, 1, 8, 25, 63, 141, 268, 464, 760, 1170, 1734, 2472, 3430, 4650, 6164, 8012, 10247, 12933, 16108, 19827, 24192, 29199, 34957, 41525, 48967, 57382, 66859, 77456, 89235, 102335, 116794, 132748, 150314, 169545, 190574, 213490, 238420
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w^2 >= x^2 + y^2 + z^2, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 50]] (* A212095 *)
(* Peter J. C. Moses, Apr 13 2012 *)
A212097
Number of (w,x,y,z) with all terms in {1,...,n} and w^3
Original entry on oeis.org
0, 1, 15, 72, 221, 536, 1098, 2028, 3445, 5502, 8368, 12234, 17304, 23794, 31963, 42089, 54439, 69332, 87070, 108013, 132549, 161043, 193924, 231550, 274463, 323023, 377776, 439254, 507882, 584329, 669046, 762686, 865804, 979052
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w^3 < x^3 + y^3 + z^3, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 40]] (* A212097 *)
(* Peter J. C. Moses, Apr 13 2012 *)
A212098
Number of (w,x,y,z) with all terms in {1,...,n} and w^3<=x^3+y^3+z^3.
Original entry on oeis.org
0, 1, 15, 72, 221, 536, 1104, 2034, 3451, 5514, 8380, 12246, 17322, 23812, 31981, 42107, 54457, 69350, 87100, 108049, 132591, 161085, 193966, 231592, 274511, 323077, 377830, 439314, 507948, 584401, 669124, 762764, 865882, 979130
Offset: 0
-
f:= proc(n) local x,y,z, r, t;
r:= 0:
for x from 1 to n do
for y from x to n do
for z from y to n do
t:= min(n, floor((x^3 + y^3 + z^3)^(1/3)));
if x = z then r:= r+t
elif x=y or y=z then r:= r+3*t
else r:= r+6*t
fi
od od od;
r
end proc:
map(f, [$0..40]); # Robert Israel, May 08 2017
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w^3 <= x^3 + y^3 + z^3, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 40]] (* A212098 *)
(* Peter J. C. Moses, Apr 13 2012 *)
-
A212098(n)={my(s=0,c=[6,3,1]);forvec(v=vector(4,i,if(i>1,[1,n],[-n,-1])),sum(i=1,4,v[i]^3)>=0&s+=c[1+(v[2]==v[3])+(v[3]==v[4])],1);s} /* not very efficient */ \\ M. F. Hasler, May 20 2012
Comments