cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 202 results. Next

A212067 Number of (w,x,y,z) with all terms in {1,...,n} and w^3 = x*y*z.

Original entry on oeis.org

0, 1, 2, 3, 10, 11, 12, 13, 26, 45, 46, 47, 60, 61, 62, 63, 88, 89, 120, 121, 128, 129, 130, 131, 162, 199, 200, 255, 262, 263, 264, 265, 332, 333, 334, 335, 402, 403, 404, 405, 436, 437, 438, 439, 446, 477, 478, 479, 540, 601, 674, 675, 682, 683, 786
Offset: 0

Views

Author

Clark Kimberling, Apr 30 2012

Keywords

Comments

For a guide to related sequences, see A211795.

Examples

			G.f. = x + 2*x^2 + 3*x^3 + 10*x^4 + 11*x^5 + 12*x^6 + 13*x^7 + 26*x^8 + ...
a(4) counts these ten 4-tuples:
(1,1,1,1), (2,2,2,2), (3,3,3,3), (4,4,4,4),
(2,1,2,4), (2,1,4,2), (2,2,1,4), (2,2,4,1),
(2,4,1,2), (2,4,2,1).
		

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w^3 == x*y*z, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 60]] (* A212067 *)
    (* Peter J. C. Moses, Apr 13 2012 *)
    a[ n_] := Length@FindInstance[ w^3 == x y z && 0 < w <= n && 0 < x <= n && 0 < y <= n && 0 < z <= n, {w, x, y, z}, Integers, 10^9]; (* Michael Somos, Nov 26 2016 *)

A212068 Number of (w,x,y,z) with all terms in {1,...,n} and 2w=x+y+z.

Original entry on oeis.org

0, 0, 3, 10, 25, 49, 86, 137, 206, 294, 405, 540, 703, 895, 1120, 1379, 1676, 2012, 2391, 2814, 3285, 3805, 4378, 5005, 5690, 6434, 7241, 8112, 9051, 10059, 11140, 12295, 13528, 14840, 16235, 17714, 19281, 20937, 22686, 24529, 26470, 28510, 30653, 32900
Offset: 0

Views

Author

Clark Kimberling, May 01 2012

Keywords

Comments

For a guide to related sequences, see A211795.

Crossrefs

Cf. A211795.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[2 w == x + y + z, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 50]] (* A212068 *)
    FindLinearRecurrence[%]
    (* Peter J. C. Moses, Apr 13 2012 *)
    LinearRecurrence[{3, -2, -2, 3, -1},{0, 0, 3, 10, 25},42] (* Ray Chandler, Aug 02 2015 *)
  • PARI
    concat(vector(2), Vec(x^2*(3 + x + x^2) / ((1 - x)^4*(1 + x)) + O(x^40))) \\ Colin Barker, Dec 02 2017

Formula

a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5).
From Colin Barker, Dec 02 2017: (Start)
G.f.: x^2*(3 + x + x^2) / ((1 - x)^4*(1 + x)).
a(n) = n*(10*n^2 - 3*n + 2)/24 for n even.
a(n) = (n - 1)*(10*n^2 + 7*n + 9)/24 for n odd.
(End)

A212088 Number of (w,x,y,z) with all terms in {1,...,n} and w

Original entry on oeis.org

0, 0, 7, 36, 117, 292, 612, 1143, 1963, 3159, 4833, 7099, 10080, 13914, 18751, 24750, 32085, 40942, 51516, 64017, 78667, 95697, 115353, 137893, 163584, 192708, 225559, 262440, 303669, 349576, 400500, 456795, 518827, 586971, 661617
Offset: 0

Views

Author

Clark Kimberling, May 01 2012

Keywords

Comments

Also, number of (w,x,y,z) with all terms in {1,...,n} and w>average{x,y,z}.
a(n) + A212089(n) = n^4.
For a guide to related sequences, see A211795.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[3 w < x + y + z, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 50]] (* A212088 *)
    FindLinearRecurrence[%]
    (* Peter J. C. Moses, Apr 13 2012 *)
    LinearRecurrence[{4, -6, 5, -5, 6, -4, 1},{0, 0, 7, 36, 117, 292, 612},35] (* Ray Chandler, Aug 02 2015 *)

Formula

a(n) = 4*a(n-1)-6*a(n-2)+5*a(n-3)-5*a(n-4)+6*a(n-5)-4*a(n-6)+a(n-7).
G.f.: x^2*(x^4+5*x^3+15*x^2+8*x+7) / ((x^2+x+1)*(1-x)^5). - Alois P. Heinz, May 18 2012

A212091 Number of (w,x,y,z) with all terms in {1,...,n} and w^2=x^2+y^2+z^2.

Original entry on oeis.org

0, 0, 0, 3, 3, 3, 6, 12, 12, 24, 24, 33, 36, 42, 48, 63, 63, 72, 84, 99, 99, 132, 141, 159, 162, 174, 180, 219, 225, 243, 258, 282, 282, 330, 339, 369, 381, 405, 420, 465, 465, 492, 525, 558, 567, 627, 645, 681, 684, 732, 744, 804, 810, 846, 885, 930
Offset: 0

Views

Author

Clark Kimberling, May 02 2012

Keywords

Comments

Every term is divisible by 3. For a guide to related sequences, see A211795.

Crossrefs

Cf. A211795.
Partial sums of A181787.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w^2 == x^2 + y^2 + z^2, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 50]] (* A212091 *)
    %/3  (* integers *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A212092 Number of (w,x,y,z) with all terms in {1,...,n} and w^2

Original entry on oeis.org

0, 1, 15, 73, 231, 562, 1155, 2133, 3632, 5801, 8830, 12907, 18264, 25131, 33766, 44461, 57524, 73274, 92043, 114213, 140173, 170289, 205057, 244884, 290251, 341658, 399594, 464582, 537200, 618046, 707665, 806727, 915828, 1035607
Offset: 0

Views

Author

Clark Kimberling, May 02 2012

Keywords

Comments

a(n)+A212095(n)=n^4.
For a guide to related sequences, see A211795.

Crossrefs

Cf. A211795.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w^2 < x^2 + y^2 + z^2, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 50]] (* A212092 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A212093 Number of (w,x,y,z) with all terms in {1,...,n} and w^2<=x^2+y^2+z^2.

Original entry on oeis.org

0, 1, 15, 76, 234, 565, 1161, 2145, 3644, 5825, 8854, 12940, 18300, 25173, 33814, 44524, 57587, 73346, 92127, 114312, 140272, 170421, 205198, 245043, 290413, 341832, 399774, 464801, 537425, 618289, 707923, 807009, 916110, 1035937
Offset: 0

Views

Author

Clark Kimberling, May 02 2012

Keywords

Comments

a(n)+A212094(n)=n^4. For a guide to related sequences, see A211795.

Crossrefs

Cf. A211795.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w^2 <= x^2 + y^2 + z^2, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 50]] (* A212093 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A212094 Number of (w,x,y,z) with all terms in {1,...,n} and w^2>x^2+y^2+z^2.

Original entry on oeis.org

0, 0, 1, 5, 22, 60, 135, 256, 452, 736, 1146, 1701, 2436, 3388, 4602, 6101, 7949, 10175, 12849, 16009, 19728, 24060, 29058, 34798, 41363, 48793, 57202, 66640, 77231, 88992, 102077, 116512, 132466, 149984, 169206, 190205, 213109, 238015
Offset: 0

Views

Author

Clark Kimberling, May 02 2012

Keywords

Comments

a(n)+A212093(n)=n^4. For a guide to related sequences, see A211795.

Crossrefs

Cf. A211795.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w^2 > x^2 + y^2 + z^2, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 50]] (* A212094 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A212095 Number of (w,x,y,z) with all terms in {1,...,n} and w^2>=x^2+y^2+z^2.

Original entry on oeis.org

0, 0, 1, 8, 25, 63, 141, 268, 464, 760, 1170, 1734, 2472, 3430, 4650, 6164, 8012, 10247, 12933, 16108, 19827, 24192, 29199, 34957, 41525, 48967, 57382, 66859, 77456, 89235, 102335, 116794, 132748, 150314, 169545, 190574, 213490, 238420
Offset: 0

Views

Author

Clark Kimberling, May 02 2012

Keywords

Comments

a(n)+A212092(n)=n^4. For a guide to related sequences, see A211795.

Crossrefs

Cf. A211795.
Partial sums of A253663.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w^2 >= x^2 + y^2 + z^2, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 50]] (* A212095 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A212097 Number of (w,x,y,z) with all terms in {1,...,n} and w^3

Original entry on oeis.org

0, 1, 15, 72, 221, 536, 1098, 2028, 3445, 5502, 8368, 12234, 17304, 23794, 31963, 42089, 54439, 69332, 87070, 108013, 132549, 161043, 193924, 231550, 274463, 323023, 377776, 439254, 507882, 584329, 669046, 762686, 865804, 979052
Offset: 0

Views

Author

Clark Kimberling, May 03 2012

Keywords

Comments

a(n)+A212100(n)=4^n. For a guide to related sequences, see A211795.

Crossrefs

Cf. A211795.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w^3 < x^3 + y^3 + z^3, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 40]] (* A212097 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A212098 Number of (w,x,y,z) with all terms in {1,...,n} and w^3<=x^3+y^3+z^3.

Original entry on oeis.org

0, 1, 15, 72, 221, 536, 1104, 2034, 3451, 5514, 8380, 12246, 17322, 23812, 31981, 42107, 54457, 69350, 87100, 108049, 132591, 161085, 193966, 231592, 274511, 323077, 377830, 439314, 507948, 584401, 669124, 762764, 865882, 979130
Offset: 0

Views

Author

Clark Kimberling, May 03 2012

Keywords

Comments

For a guide to related sequences, see A211795.

Crossrefs

Programs

  • Maple
    f:= proc(n) local x,y,z, r, t;
       r:= 0:
       for x from 1 to n do
         for y from x to n do
           for z from y to n do
              t:= min(n, floor((x^3 + y^3 + z^3)^(1/3)));
              if x = z then r:= r+t
              elif x=y or y=z then r:= r+3*t
              else r:= r+6*t
              fi
       od od od;
       r
    end proc:
    map(f, [$0..40]); # Robert Israel, May 08 2017
  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w^3 <= x^3 + y^3 + z^3, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 40]] (* A212098 *)
    (* Peter J. C. Moses, Apr 13 2012 *)
  • PARI
    A212098(n)={my(s=0,c=[6,3,1]);forvec(v=vector(4,i,if(i>1,[1,n],[-n,-1])),sum(i=1,4,v[i]^3)>=0&s+=c[1+(v[2]==v[3])+(v[3]==v[4])],1);s} /* not very efficient */ \\ M. F. Hasler, May 20 2012

Formula

a(n) + A212099(n) = n^4.
Previous Showing 41-50 of 202 results. Next