A213232 G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^9)^3).
1, 1, 4, 28, 215, 1983, 19789, 213698, 2426851, 28661509, 348287354, 4322627557, 54508747790, 695534616050, 8953637420349, 116002300640637, 1509724588732027, 19707310304585212, 257698683361191598, 3372154116182404890, 44121356408759264549
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 4*x^2 + 28*x^3 + 215*x^4 + 1983*x^5 + 19789*x^6 +... Related expansions: A(x)^9 = 1 + 9*x + 72*x^2 + 624*x^3 + 5661*x^4 + 54621*x^5 + 555837*x^6 +... 1/A(-x*A(x)^9)^3 = 1 + 3*x + 21*x^2 + 154*x^3 + 1446*x^4 + 14511*x^5 + 158838*x^6 +...
Crossrefs
Programs
-
PARI
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A^3, x, -x*subst(A^9, x, x+x*O(x^n)))) ); polcoeff(A, n)} for(n=0, 30, print1(a(n), ", "))
Comments