cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A384899 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384894.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 1, 0, 1, 4, 9, 6, -4, 0, 1, 5, 14, 16, -2, -14, 0, 1, 6, 20, 32, 12, -32, -30, 0, 1, 7, 27, 55, 45, -39, -103, 12, 0, 1, 8, 35, 86, 105, -12, -211, -100, 330, 0, 1, 9, 44, 126, 201, 81, -318, -411, 552, 1139, 0, 1, 10, 54, 176, 343, 282, -350, -956, 342, 3038, 2226, 0
Offset: 0

Views

Author

Seiichi Manyama, Jun 12 2025

Keywords

Examples

			Square array begins:
  1,   1,   1,   1,   1,   1, ...
  0,   1,   2,   3,   4,   5, ...
  0,   2,   5,   9,  14,  20, ...
  0,   1,   6,  16,  32,  55, ...
  0,  -4,  -2,  12,  45, 105, ...
  0, -14, -32, -39, -12,  81, ...
		

Crossrefs

Columns k=0..1 give A000007, A384894.

Programs

  • PARI
    b(n, k) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-n+2*j+k-1,j-1)*b(n-j,2*j)/j));
    a(n, k) = b(n, -k);

Formula

Let b(n,k) = 0^n if n*k=0, otherwise b(n,k) = (-1)^n * k * Sum_{j=1..n} binomial(-n+2*j+k-1,j-1) * b(n-j,2*j)/j. Then A(n,k) = b(n,-k).

A384941 G.f. A(x) satisfies A(x) = 1 + x/A(-x*A(x))^4.

Original entry on oeis.org

1, 1, 4, -2, -64, -95, 780, 5230, 19228, -90488, -1454232, -4080620, 19557280, 270109125, 1702743364, -35378580, -74674412048, -515950535521, -1719717134140, 9100931191804, 173629815007712, 988336433707663, 2065106985108344, -25897495149473592
Offset: 0

Views

Author

Seiichi Manyama, Jun 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, k=-1) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-n+2*j+k-1, j-1)*a(n-j, 4*j)/j));

Formula

See A384944.

A384942 G.f. A(x) satisfies A(x) = 1 + x/A(-x*A(x))^5.

Original entry on oeis.org

1, 1, 5, -5, -135, -110, 3661, 16440, -1375, -827075, -8388505, 2298072, 496514205, 2782147265, 322830120, -164675585390, -1846591014842, -3084367863270, 84920580735040, 845318162940805, 4163798547024100, -18708392155753220, -503209620889452990, -3212928238924865090
Offset: 0

Views

Author

Seiichi Manyama, Jun 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, k=-1) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-n+2*j+k-1, j-1)*a(n-j, 5*j)/j));

Formula

See A384945.

A384943 G.f. A(x) satisfies A(x) = 1 + x/A(-x*A(x))^6.

Original entry on oeis.org

1, 1, 6, -9, -244, -39, 11262, 36971, -268890, -3724293, -24899558, 159971919, 3851093928, 9663394063, -197371002600, -2108992348026, -9447769941412, 111942512192787, 2253965670439788, 7917705821761592, -100488750700889250, -1520857626228210483
Offset: 0

Views

Author

Seiichi Manyama, Jun 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, k=-1) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-n+2*j+k-1, j-1)*a(n-j, 6*j)/j));

Formula

See A384946.

A385014 G.f. A(x) satisfies A(x) = 1 + x*A(x)/A(-x*A(x))^2.

Original entry on oeis.org

1, 1, 3, 4, 3, -15, -118, -336, -595, 1467, 20391, 96205, 353686, 574786, -2717256, -30598208, -197828371, -841728699, -2599029153, -1309899955, 56975269295, 522707807733, 3425068059553, 16747743739845, 63468629516172, 111911654532374, -907903172853988, -12555837715110897
Offset: 0

Views

Author

Seiichi Manyama, Jun 15 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, k=-1) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-n+j+k-1, j-1)*a(n-j, 2*j)/j));

Formula

See A385018.

A384895 G.f. A(x) satisfies A(x) = 1 + x/A(-x*A(x)^2)^2.

Original entry on oeis.org

1, 1, 2, 3, 4, -3, -50, -237, -872, -2375, -3522, 11383, 140170, 830999, 3797676, 13901117, 36231696, 12991001, -656219096, -5809148691, -35189341480, -173155983991, -699938697650, -2079618264082, -1460269315332, 39890883936437, 413233629798312, 2857552649413347
Offset: 0

Views

Author

Seiichi Manyama, Jun 12 2025

Keywords

Crossrefs

Column k=1 of A384900.

Programs

  • PARI
    a(n, k=-1) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-2*n+3*j+k-1, j-1)*a(n-j, 2*j)/j));

Formula

See A384900.
Showing 1-6 of 6 results.