A213108
E.g.f.: A(x) = exp( x/A(-x*A(x)) ).
Original entry on oeis.org
1, 1, 3, 10, 41, 76, -2183, -54998, -1045567, -15948296, -157645999, 2035442014, 217585291057, 10000385378452, 373813151971001, 11759936127330346, 269243105500780673, -519586631788126352, -649842878319124373855, -59793494397006229506890
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 10*x^3/3! + 41*x^4/4! + 76*x^5/5! - 2183*x^6/6! +...
Related expansions:
1/A(-x*A(x)) = 1 + x + x^2/2! + x^3/3! - 23*x^4/4! - 419*x^5/5! - 5159*x^6/6! +...
The logarithm of the e.g.f., log(A(x)) = x/A(-x*A(x)), begins:
log(A(x)) = x + 2*x^2/2! + 3*x^3/3! + 4*x^4/4! - 115*x^5/5! - 2514*x^6/6! - 36113*x^7/7! +...
-
{a(n)=local(A=1+x);for(i=1,n,A=exp(x/subst(A,x,-x*A+x*O(x^n))));n!*polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
A213112
E.g.f.: A(x) = exp( x/A(-x*A(x)^7)^3 ).
Original entry on oeis.org
1, 1, 7, 118, 2953, 109156, 5220649, 316358470, 23113133089, 1989812691208, 196917302640241, 22027382030604226, 2745173167377165793, 376884883299800082988, 56471832695739964146505, 9164249250078891945300886, 1600258838038369930772797249
Offset: 0
E.g.f.: A(x) = 1 + x + 7*x^2/2! + 118*x^3/3! + 2953*x^4/4! + 109156*x^5/5! +...
Related expansions:
A(x)^3 = 1 + 3*x + 27*x^2/2! + 486*x^3/3! + 12825*x^4/4! + 477108*x^5/5! +...
A(x)^7 = 1 + 7*x + 91*x^2/2! + 1918*x^3/3! + 56329*x^4/4! + 2194612*x^5/5! +...
1/A(-x*A(x)^7)^3 = 1 + 3*x + 33*x^2/2! + 603*x^3/3! + 17913*x^4/4! +...
The logarithm of the e.g.f., log(A(x)) = x/A(-x*A(x)^7)^3, begins:
log(A(x)) = x + 6*x^2/2! + 99*x^3/3! + 2412*x^4/4! + 89565*x^5/5! +...
-
{a(n)=local(A=1+x);for(i=1,n,A=exp(x/subst(A^3,x,-x*A^7+x*O(x^n))));n!*polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
A213113
E.g.f.: A(x) = exp( x/A(-x*A(x)^9)^3 ).
Original entry on oeis.org
1, 1, 7, 154, 4681, 228076, 14299129, 1138327282, 108153498625, 11945906543512, 1500579818594641, 210620216812835446, 32619162944121580369, 5512919937646519781956, 1007971183370936380058233, 197907153405452704613136466, 41467801090663272520003650049
Offset: 0
E.g.f.: A(x) = 1 + x + 7*x^2/2! + 154*x^3/3! + 4681*x^4/4! + 228076*x^5/5! +...
Related expansions:
A(x)^3 = 1 + 3*x + 27*x^2/2! + 594*x^3/3! + 18873*x^4/4! + 902988*x^5/5! +...
A(x)^9 = 1 + 9*x + 135*x^2/2! + 3402*x^3/3! + 121257*x^4/4! + 5887404*x^5/5! +...
1/A(-x*A(x)^9)^3 = 1 + 3*x + 45*x^2/2! + 999*x^3/3! + 39609*x^4/4! +...
The logarithm of the e.g.f., log(A(x)) = x/A(-x*A(x)^9)^3, begins:
log(A(x)) = x + 6*x^2/2! + 135*x^3/3! + 3996*x^4/4! + 198045*x^5/5! +...
-
{a(n)=local(A=1+x);for(i=1,n,A=exp(x/subst(A^3,x,-x*A^9+x*O(x^n))));n!*polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
A213109
E.g.f.: A(x) = exp( x/A(-x*A(x)^3) ).
Original entry on oeis.org
1, 1, 3, 22, 233, 3716, 77257, 2026606, 63726497, 2333516392, 97335801521, 4543398147674, 234240366949921, 13191513757571644, 804299893048589225, 52696560194440470046, 3686739789058021079873, 273950438842854064788560, 21522076959435116533294177
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 22*x^3/3! + 233*x^4/4! + 3716*x^5/5! +...
Related expansions:
A(x)^3 = 1 + 3*x + 15*x^2/2! + 126*x^3/3! + 1497*x^4/4! + 24228*x^5/5! +...
1/A(-x*A(x)^3) = 1 + x + 5*x^2/2! + 37*x^3/3! + 489*x^4/4! + 8541*x^5/5! +...
The logarithm of the e.g.f., log(A(x)) = x/A(-x*A(x)^3), begins:
log(A(x)) = x + 2*x^2/2! + 15*x^3/3! + 148*x^4/4! + 2445*x^5/5! + 51246*x^6/6! +...
-
{a(n)=local(A=1+x);for(i=1,n,A=exp(x/subst(A,x,-x*A^3+x*O(x^n))));n!*polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
A213111
E.g.f.: A(x) = exp( x/A(-x*A(x)^6)^2 ).
Original entry on oeis.org
1, 1, 5, 73, 1497, 48321, 2016733, 106687113, 6745180529, 495988880833, 41495596689141, 3880618840698249, 400537444634948041, 45126092520882513921, 5501154522933362385485, 720279890636684703825481, 100658531630809161730405857, 14934726665907895887483076737
Offset: 0
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 73*x^3/3! + 1497*x^4/4! + 48321*x^5/5! +...
Related expansions:
A(x)^2 = 1 + 2*x + 12*x^2/2! + 176*x^3/3! + 3728*x^4/4! + 118912*x^5/5! +...
A(x)^6 = 1 + 6*x + 60*x^2/2! + 1008*x^3/3! + 23952*x^4/4! + 775296*x^5/5! +...
1/A(-x*A(x)^6)^2 = 1 + 2*x + 20*x^2/2! + 296*x^3/3! + 7824*x^4/4! +...
The logarithm of the e.g.f., log(A(x)) = x/A(-x*A(x)^6)^2, begins:
log(A(x)) = x + 4*x^2/2! + 60*x^3/3! + 1184*x^4/4! + 39120*x^5/5! + 1639872*x^6/6! +...
-
{a(n)=local(A=1+x);for(i=1,n,A=exp(x/subst(A^2,x,-x*A^6+x*O(x^n))));n!*polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
A213225
G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^4)).
Original entry on oeis.org
1, 1, 2, 6, 20, 76, 313, 1375, 6337, 30243, 148129, 739172, 3737993, 19077868, 97955307, 504707999, 2604312205, 13436676965, 69229324721, 355854322633, 1823672937884, 9314227843463, 47406130512872, 240498260267049, 1216833204738419, 6146116088495029, 31030233400282749
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 20*x^4 + 76*x^5 + 313*x^6 +...
Related expansions:
A(x)^4 = 1 + 4*x + 14*x^2 + 52*x^3 + 201*x^4 + 816*x^5 + 3468*x^6 +...
1/A(-x*A(x)^4) = 1 + x + 3*x^2 + 9*x^3 + 35*x^4 + 146*x^5 + 656*x^6 +...
-
terms = 26; A[] = 1; Do[A[x] = 1/(1-x/A[-x*A[x]^4]) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Aug 23 2025 *)
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A, x, -x*subst(A^4, x, x+x*O(x^n)))) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A213226
G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^5)).
Original entry on oeis.org
1, 1, 2, 7, 27, 122, 607, 3208, 17688, 99803, 571238, 3292738, 19001315, 109303307, 624615928, 3537913240, 19843769848, 110273489737, 608712132055, 3355449334452, 18624818099047, 105191779542849, 610586100129734, 3662333209225714, 22652502251884322
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 27*x^4 + 122*x^5 + 607*x^6 +...
Related expansions:
A(x)^5 = 1 + 5*x + 20*x^2 + 85*x^3 + 380*x^4 + 1801*x^5 + 9045*x^6 +...
1/A(-x*A(x)^5) = 1 + x + 4*x^2 + 14*x^3 + 66*x^4 + 336*x^5 + 1805*x^6 +...
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A, x, -x*subst(A^5, x, x+x*O(x^n)))) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A213228
G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^6)^2).
Original entry on oeis.org
1, 1, 3, 14, 73, 440, 2862, 19991, 146939, 1125413, 8896018, 72067978, 595097838, 4987609871, 42290465703, 361845473658, 3117830204185, 27009650432888, 234932107635587, 2049479335366836, 17915253987741538, 156799716352350344, 1373180896765862962
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 14*x^3 + 73*x^4 + 440*x^5 + 2862*x^6 +...
Related expansions:
A(x)^6 = 1 + 6*x + 33*x^2 + 194*x^3 + 1188*x^4 + 7656*x^5 + 51583*x^6 +...
1/A(-x*A(x)^6)^2 = 1 + 2*x + 9*x^2 + 44*x^3 + 268*x^4 + 1750*x^5 + 12422*x^6 +...
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A^2, x, -x*subst(A^6, x, x+x*O(x^n)))) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A213229
G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^7)^2).
Original entry on oeis.org
1, 1, 3, 16, 93, 649, 4924, 40221, 344817, 3058115, 27798895, 257009431, 2404734586, 22679499148, 214947515333, 2042353663088, 19417906390395, 184458621283607, 1748712359825873, 16530801697256737, 155736745914813741, 1461877902947680987, 13674142992787617967
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 16*x^3 + 93*x^4 + 649*x^5 + 4924*x^6 +...
Related expansions:
A(x)^7 = 1 + 7*x + 42*x^2 + 273*x^3 + 1862*x^4 + 13531*x^5 + 104062*x^6 +...
1/A(-x*A(x)^7)^2 = 1 + 2*x + 11*x^2 + 60*x^3 + 431*x^4 + 3302*x^5 + 27421*x^6 +..
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A^2, x, -x*subst(A^7, x, x+x*O(x^n)))) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A213230
G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^8)^2).
Original entry on oeis.org
1, 1, 3, 18, 115, 902, 7722, 70784, 678251, 6670586, 66851992, 677328214, 6903177354, 70490174298, 718856047396, 7304677030708, 73837797474235, 741722190452840, 7402780597473820, 73459355234486763, 726095774886910232, 7170907377415662763, 71063833561266044578
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 115*x^4 + 902*x^5 + 7722*x^6 +...
Related expansions:
A(x)^8 = 1 + 8*x + 52*x^2 + 368*x^3 + 2754*x^4 + 22112*x^5 + 189344*x^6 +...
1/A(-x*A(x)^8)^2 = 1 + 2*x + 13*x^2 + 78*x^3 + 634*x^4 + 5488*x^5 + 50969*x^6 +...
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A^2, x, -x*subst(A^8, x, x+x*O(x^n)))) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
Showing 1-10 of 17 results.
Comments