cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 45 results. Next

A213303 Smallest number with n nonprime substrings (Version 2: substrings with leading zeros are counted as nonprime if the corresponding number is > 0).

Original entry on oeis.org

2, 1, 10, 14, 101, 104, 144, 1001, 1014, 1044, 1444, 10010, 10014, 10144, 10444, 14444, 100101, 100104, 100144, 101444, 104444, 144444, 1000144, 1001014, 1001044, 1001444, 1014444, 1044444, 1444444, 10001044, 10001444, 10010144, 10010444, 10014444, 10144444, 10444444, 14444444, 100010144
Offset: 0

Views

Author

Hieronymus Fischer, Aug 26 2012

Keywords

Comments

The sequence is well defined since for each n >= 0 there is a number with n nonprime substrings.
Different from A213304, first different term is a(16).

Examples

			a(0)=2, since 2 is the least number with zero nonprime substrings.
a(1)=1, since 1 has 1 nonprime substrings.
a(2)=10, since 10 is the least number with 2 nonprime substrings, these are 1 and 10 ('0' will not be counted).
a(3)=14, since 14 is the least number with 3 nonprime substrings, these are 1 and 4 and 14. 10, 11 and 12 only have 2 such substrings.
		

Crossrefs

Formula

a(m(m+1)/2) = (13*10^(m-1)-4)/9, m>0.
With b(n):=floor((sqrt(8*n-7)-1)/2):
a(n) > 10^b(n), for n>2, a(n) = 10^b(n) for n=1,2.
a(n) >= 10^b(n)+4*10^(n-1-b(n)(b(n)+1)/2)-1)/9, equality holds if n or n+1 is a triangular number > 0 (cf. A000217).
a(n) <= A213304(n).
a(n) <= A213306(n).

A213306 Minimal prime with n nonprime substrings (Version 2: substrings with leading zeros are counted as nonprime if the corresponding number is > 0).

Original entry on oeis.org

2, 13, 11, 103, 101, 149, 1009, 1021, 1049, 1481, 10039, 10069, 10169, 11681, 14669, 100109, 100189, 100169, 101681, 104681, 146669, 1000669, 1001041, 1001081, 1004669, 1014469, 1046849, 1468469, 10001081, 10004669, 10010851
Offset: 0

Views

Author

Hieronymus Fischer, Aug 26 2012

Keywords

Examples

			a(0) = 2, since 2 is the least number with zero nonprime substrings.
a(1) = 13, since 13 has 1 nonprime substring (=’1’).
a(2) = 11, since 11 is the least number with 2 nonprime substrings (= 2 times ‘1’).
a(3) = 103, since 103 is the least number with 3 nonprime substrings, these are ‘1’ and ‘10’ and ‘03’ (‘0’ is not a valid substring in version 2).
		

Crossrefs

Formula

a(n) > 10^floor((sqrt(8*n+1)-1)/2), for n>2.
a(n) >= A213303(n).
a(n) <= A213307(n).

A213307 Minimal prime with n nonprime substrings (Version 3: substrings with leading zeros are counted as nonprime if the corresponding number is not a prime).

Original entry on oeis.org

2, 13, 11, 127, 101, 149, 1009, 1063, 1049, 1481, 10091, 10069, 10169, 11681, 14669, 100129, 100189, 100169, 101681, 104681, 146669, 1000669, 1001219, 1001081, 1004669, 1014469, 1046849, 1468469, 10001081, 10004669, 10010851
Offset: 0

Views

Author

Hieronymus Fischer, Aug 26 2012

Keywords

Examples

			a(0) = 2, since 2 is the least number with zero nonprime substrings.
a(1) = 13, since 13 there is one nonprime substring (=1).
a(2) = 11, since 11 is the least number with 2 nonprime substrings (2 times ‘1’).
a(3) = 127, since 127 is the least number with 3 nonprime substrings, these are 1 and 12 and 27 (according to version 3).
		

Crossrefs

Formula

a(n) > 10^floor((sqrt(8*n+1)-1)/2), for n>2.
a(n) >= A213304(n).
a(n) >= A213306(n).

A217103 Minimal number (in decimal representation) with n nonprime substrings in base-3 representation (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

2, 1, 3, 4, 14, 9, 34, 29, 30, 27, 89, 88, 83, 84, 81, 268, 251, 250, 248, 245, 243, 752, 754, 746, 740, 734, 731, 729, 2237, 2239, 2210, 2203, 2198, 2192, 2189, 2187, 6632, 6611, 6614, 6584, 6577, 6569, 6563, 6564, 6561, 19814, 19754, 19733, 19736, 19706
Offset: 0

Views

Author

Hieronymus Fischer, Dec 12 2012

Keywords

Comments

The sequence is well-defined in that for each n the set of numbers with n nonprime substrings is not empty. Proof: Define m(n):=2*sum_{j=i..k} 3^j, where k:=floor((sqrt(8*n+1)-1)/2), i:= n-A000217(k). For n=0,1,2,3,… the m(n) in base-3 representation are 2, 22, 20, 222, 220, 200, 2222, 2220, 2200, 2000, 22222, 22220, .... m(n) has k+1 digits and (k-i+1) 2’s, thus, the number of nonprime substrings of m(n) is ((k+1)*(k+2)/2)-k-1+i = (k*(k+1)/2)+i = n, which proves the statement.
If p is a number with k prime substrings and d digits (in base-3 representation), p != 1 (mod 3), m>=d, than b := p*3^(m-d) has m*(m+1)/2 - k nonprime substrings, and a(A000217(n)-k) <= b.

Examples

			a(0) = 2, since 2 = 2_3 is the least number with zero nonprime substrings in base-3 representation.
a(1) = 1, since 1 = 1_3 is the least number with 1 nonprime substring in base-3 representation.
a(2) = 3, since 3 = 10_3 is the least number with 2 nonprime substrings in base-3 representation (0 and 1).
a(3) = 4, since 4 = 11_3 is the least number with 3 nonprime substrings in base-3 representation (1, 1 and 11).
a(4) = 14, since 14 = 112_3 is the least number with 4 nonprime substrings in base-3 representation, these are 1, 1, 11 and 112 (remember, that substrings with leading zeros are considered to be nonprime).
a(7) = 29, since 29 = 1002_3 is the least number with 7 nonprime substrings in base-3 representation, these are 0, 0, 1, 00, 02, 002 and 100 (remember, that substrings with leading zeros are considered to be nonprime, 2_3 = 2, 10_3 = 3 and 1002_3 = 29 are base-3 prime substrings).
		

Crossrefs

Formula

a(n) >= 3^floor((sqrt(8*n-7)-1)/2) for n>0, equality holds if n=1 or n+1 is a triangular number (cf. A000217).
a(n) >= 3^floor((sqrt(8*n+1)-1)/2) for n>3, equality holds if n+1 is a triangular number.
a(A000217(n)-1) = 3^(n-1), n>1.
a(A000217(n)-k) >= 3^(n-1) + k-1, 1<=k<=n, n>1.
a(A000217(n)-k) = 3^(n-1) + p, where p is the minimal number >= 0 such that 3^(n-1) + p, has k prime substrings in base-3 representation, 1<=k<=n, n>1.

A217303 Minimal natural number (in decimal representation) with n prime substrings in base-3 representation (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

1, 2, 5, 11, 17, 23, 50, 104, 71, 152, 215, 395, 476, 701, 719, 1367, 1934, 1448, 4127, 4121, 4346, 5822, 12302, 12383, 17468, 25505, 32066, 39113, 51749, 91040, 111509, 110798, 117359, 157211, 332396, 334358, 465092, 333791, 819386, 865232, 1001375, 1396673
Offset: 0

Views

Author

Hieronymus Fischer, Nov 22 2012

Keywords

Comments

The sequence is well-defined in that for each n the set of numbers with n prime substrings is not empty. Proof: Define m(0):=1, m(1):=2 and m(n+1):=3*m(n)+2 for n>0. This results in m(n)=2*sum_{j=0..n-1} 3^j = 3^n - 1 or m(n)=1, 2, 22, 222, 2222, 22222, …,for n=0,1,2,3,…. Evidently, for n>0 m(n) has n 2’s and these are the only prime substrings in base-3 representation. This is why every substring of m(n) with more than one digit is a product of two integers > 1 (by definition) and can therefore not be prime number.
No term is divisible by 3.

Examples

			a(1) = 2 = 2_3, since 2 is the least number with 1 prime substring in base-3 representation.
a(2) = 5 = 12_3, since 5 is the least number with 2 prime substrings in base-3 representation (2_3 and 12_3).
a(3) = 11 = 102_3, since 11 is the least number with 3 prime substrings in base-3 representation (2_3, 10_3, and 102_3).
a(5) = 23 = 212_3, since 23 is the least number with 5 prime substrings in base-3 representation (2 times 2_3, 12_3=5, 21_3=19, and 212_3=23).
a(7) = 104 = 10212_3, since 104 is the least number with 7 prime substrings in base-3 representation (2 times 2_3, 10_3=3, 12_3=5, 21_3=19, 102_3=11, and 212_3=23).
		

Crossrefs

Formula

a(n) > 3^floor(sqrt(8*n+1)-1)/2), for n>1.
a(n) <= 3^n - 1.
a(n+1) <= 3a(n)+2.

A217308 Minimal natural number (in decimal representation) with n prime substrings in base-8 representation (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

1, 2, 11, 19, 83, 107, 157, 669, 751, 1259, 4957, 6879, 6011, 14303, 47071, 48093, 65371, 188143, 327515, 440287, 384751, 1029883, 2604783, 2948955, 3602299, 6946651, 20304733, 23846747, 23937003, 23723867, 57278299, 167689071, 175479547, 191496027, 233824091
Offset: 0

Views

Author

Hieronymus Fischer, Nov 22 2012

Keywords

Comments

The sequence is well-defined in that for each n the set of numbers with n prime substrings is not empty. Proof: Define m(0):=1, m(1):=2 and m(n+1):=8*m(n)+2 for n>0. This results in m(n)=2*sum_{j=0..n-1} 8^j = 2*(8^n - 1)/7 or m(n)=1, 2, 22, 222, 2222, 22222, …, (in base-8) for n=0,1,2,3,…. Evidently, for n>0 m(n) has n 2’s and these are the only prime substrings in base-8 representation. This is why every substring of m(n) with more than one digit is a product of two integers > 1 (by definition) and can therefore not be prime number.
No term is divisible by 8.

Examples

			a(1) = 2 = 2_8, since 2 is the least number with 1 prime substring in base-8 representation.
a(2) = 11 = 13_8, since 11 is the least number with 2 prime substrings in base-8 representation (3_8 and 13_8).
a(3) = 19 = 23_8, since 19 is the least number with 3 prime substrings in base-8 representation (2_8, 3_8, and 23_8).
a(4) = 83 = 123_8, since 83 is the least number with 4 prime substrings in base-8 representation (2_8, 3_8, 23_8=19, and 123_8=83).
a(8) = 751 = 1357_8, since 751 is the least number with 8 prime substrings in base-8 representation (3_8, 5_8, 7_8, 13_8=11, 35_8=29, 57_8=47, 357_8=239, and 1357_8=751).
		

Crossrefs

Formula

a(n) > 8^floor(sqrt(8*n-7)-1)/2), for n>0.
a(n) <= 2*(8^n - 1)/7, n>0.
a(n+1) <= 8*a(n)+2.

A213301 Largest prime with n nonprime substrings (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

373, 3797, 37337, 37397, 373379, 831373, 973373, 3733739, 8313733, 9973331, 9721373, 52313797, 73313797, 97337333, 99793373, 373373977, 831373379, 799733317, 974313797, 991733137, 7331337337, 3797193373, 9719337973, 9917331373, 9793733797, 9974331373
Offset: 0

Views

Author

Hieronymus Fischer, Aug 26 2012

Keywords

Examples

			a(0)=373, since 373 is the greatest prime such that all substrings are prime, hence it is the maximal prime with 0 nonprime substrings.
a(3)= 37397, since the nonprime substrings of 37337 are 9, 39 and 7397, and all greater primes have > 3 nonprime substrings.
		

Crossrefs

A213305 Minimal prime with n nonprime substrings (Version 1: substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

2, 13, 11, 127, 103, 101, 1013, 1019, 1021, 1009, 10177, 10037, 10067, 10007, 10009, 100237, 100271, 100153, 100043, 100003, 100049, 1001173, 1000313, 1000037, 1000033, 1000039, 1000003, 1000081, 10000379, 10001237, 10000223
Offset: 0

Views

Author

Hieronymus Fischer, Aug 26 2012

Keywords

Examples

			a(0) = 2, since 2 is the least prime with zero nonprime substrings.
a(1) = 13, since 13 is the least prime with exactly 1 (“1”) nonprime substrings.
a(2) = 11, since 11 is the least prime with exactly 2 (“1” and “1”) nonprime substrings.
		

Crossrefs

Formula

a(n) > 10^floor((sqrt(8*n+1)-1)/2) for n>0.
a(m(m+1)/2) > 10^m, m>0.
a(n) >= A213302(n).

A213320 Numbers such that the number of nonprime substrings equals the number of digits (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

1, 4, 6, 8, 9, 11, 12, 15, 19, 20, 21, 24, 26, 28, 30, 34, 36, 38, 39, 41, 42, 45, 50, 51, 54, 56, 58, 61, 62, 63, 65, 70, 74, 76, 78, 82, 85, 87, 89, 92, 93, 95, 117, 123, 127, 132, 133, 135, 139, 153, 157, 167, 171, 172, 175
Offset: 1

Views

Author

Hieronymus Fischer, Aug 26 2012

Keywords

Comments

Also numbers such that the number of prime substrings is A000217(m-1) = m(m-1)/2, where m is the number of digits.
The sequence is finite. Proof: Let p be a number >= 10^17 and let m = 9k+j be the number of digits of p, where k = floor(m/9) >= 2 and j = m mod 9. Since each 9-digit number has at least 15 nonprime substrings, it follows that p has at least 15k = 9k + 6k > 9k + j = m nonprime substrings (since 6k >= 12> j for k >= 2). Consequently, no number >= 10^17 can be a term of the sequence.
The last term is a(858)=3733739. Proof: Each 9-digit number has at least 15 nonprime substrings, thus, the numbers 10^8 <= p < 10^14 also have at least 15 nonprime substrings and therefore cannot be terms of the sequence. Same is true for numbers 10^14 <= p < 10^17 since each 6-digit number has at least 4 nonprime substrings, and thus each number with >= 15 digits has at least 15+4 = 19 nonprime substrings. Since each 8-digit number has at least 10 nonprime substrings, it follows that the last term of the sequence must be less than 10^7. By direct search we find a(858) = 3733739.

Examples

			a(1) = 1, since 1 has 1 nonprime substrings.
a(43) = 117, since 117 has 3 digits and also 3 nonprime substrings (1, 1, 117).
		

Crossrefs

Extensions

Typo in example corrected, Hieronymus Fischer, Sep 11 2012

A217104 Minimal number (in decimal representation) with n nonprime substrings in base-4 representation (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

2, 1, 5, 4, 19, 17, 16, 75, 67, 66, 64, 269, 263, 266, 257, 256, 1053, 1031, 1035, 1029, 1026, 1024, 4125, 4119, 4123, 4107, 4099, 4098, 4096, 16479, 16427, 16431, 16407, 16395, 16391, 16386, 16384, 65709, 65629, 65579, 65581, 65559, 65543, 65539, 65537, 65536
Offset: 0

Views

Author

Hieronymus Fischer, Dec 12 2012

Keywords

Comments

The sequence is well-defined in that for each n the set of numbers with n nonprime substrings is not empty. Proof: Define m(n):=2*sum_{j=i..k} 4^j, where k:=floor((sqrt(8*n+1)-1)/2), i:= n-A000217(k). For n=0,1,2,3,... the m(n) in base-4 representation are 2, 22, 20, 222, 220, 200, 2222, 2220, 2200, 2000, 22222, 22220, .... m(n) has k+1 digits and (k-i+1) 2’s. Thus, the number of nonprime substrings of m(n) is ((k+1)*(k+2)/2)-k-1+i = (k*(k+1)/2)+i = n, which proves the statement.
If p is a number with k prime substrings and d digits (in base-4 representation), m>=d, than b := p*4^(m-d) has m*(m+1)/2 - k nonprime substrings, and a(A000217(n)-k) <= b.

Examples

			a(0) = 2, since 2 = 2_4 is the least number with zero nonprime substrings in base-4 representation.
a(1) = 1, since 1 = 1_4 is the least number with 1 nonprime substring in base-4 representation.
a(2) = 5, since 5 = 11_4 is the least number with 2 nonprime substrings in base-4 representation (these are 2-times 1).
a(3) = 4, since 4 = 10_4 is the least number with 3 nonprime substrings in base-4 representation (these are 0, 1 and 10).
a(4) = 19, since 19 = 103_4 is the least number with 4 nonprime substrings in base-4 representation, these are 0, 1, 10, and 03 (remember, that substrings with leading zeros are considered to be nonprime).
a(7) = 75, since 75 = 1023_4 is the least number with 7 nonprime substrings in base-4 representation, these are 0, 1, 10, 02, 023, 102 and 1023 (remember, that substrings with leading zeros are considered to be nonprime: 2_4 = 2, 3_4 = 3 and 23_4 = 11 are the only base-4 prime substrings of 75).
		

Crossrefs

Formula

a(n) >= 4^floor((sqrt(8*n-7)-1)/2) for n>0, equality holds if n is a triangular number (cf. A000217).
a(A000217(n)) = 4^(n-1), n>0.
a(A000217(n)-k) >= 4^(n-1) + k, 0<=k0.
a(A000217(n)-k) = 4^(n-1) + p, where p is the minimal number >= 0 such that 4^(n-1) + p, has k prime substrings in base-4 representation, 0<=k0.
Previous Showing 11-20 of 45 results. Next