cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 40 results. Next

A316202 Number of integer partitions of n into Fermi-Dirac primes.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 3, 4, 5, 7, 8, 11, 13, 17, 20, 25, 31, 37, 45, 54, 65, 77, 92, 109, 128, 152, 177, 208, 242, 283, 327, 380, 439, 506, 583, 669, 768, 878, 1004, 1144, 1303, 1482, 1681, 1906, 2156, 2438, 2750, 3101, 3490, 3924, 4407, 4942, 5538, 6197, 6929
Offset: 0

Views

Author

Gus Wiseman, Jun 26 2018

Keywords

Comments

A Fermi-Dirac prime (A050376) is a number of the form p^(2^k) where p is prime and k >= 0.

Examples

			The a(12) = 13 integer partitions of 12 into Fermi-Dirac primes:
(75), (93),
(444), (543), (552), (732),
(3333), (4332), (4422), (5322),
(33222), (42222),
(222222).
		

Crossrefs

Programs

  • Mathematica
    nn=60;
    FDpQ[n_]:=With[{f=FactorInteger[n]},n>1&&Length[f]==1&&MatchQ[FactorInteger[2f[[1,2]]],{{2,_}}]]
    FDprimeList=Select[Range[nn],FDpQ];
    ser=Product[1/(1-x^d),{d,FDprimeList}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}]

Formula

O.g.f.: Product_d 1/(1 - x^d) where the product is over all Fermi-Dirac primes (A050376).

A305831 Number of connected components of the strict integer partition with FDH number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 2, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2018

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph.

Examples

			Let f = A050376. The FD-factorization of 1683 is 9*11*17 = f(6)*f(7)*f(10). The connected components of {6,7,10} are {{7},{6,10}}, so a(1683) = 2.
		

Crossrefs

Programs

  • Mathematica
    FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    nn=200;FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Table[Length[zsm[FDfactor[n]/.FDrules]],{n,nn}]

A305832 Number of connected components of the n-th FDH set-system.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 2, 1, 1, 2, 1, 3, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. Every positive integer n has a unique factorization of the form n = f(s_1)*...*f(s_k) where the s_i are strictly increasing positive integers. The n-th FDH set-system is obtained by repeating this factorization on each index s_i.

Examples

			Let f = A050376. The FD-factorization of 765 is 5*9*17 or f(4)*f(6)*f(10) = f(4)*f(2*3)*f(2*5) with connected components {{{4}},{{2,3},{2,5}}}, so a(765) = 2.
		

Crossrefs

Programs

  • Mathematica
    FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>1]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    nn=100;FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Table[Length[csm[FDfactor[#]/.FDrules&/@(FDfactor[n]/.FDrules)]],{n,nn}]

A316210 Number of integer partitions of the n-th Fermi-Dirac prime into Fermi-Dirac primes.

Original entry on oeis.org

1, 1, 2, 2, 4, 7, 11, 17, 31, 37, 54, 109, 152, 283, 380, 878, 1482, 1906, 3101, 3924, 6197, 11915, 14703, 27063, 40016, 48450, 84633, 101419, 121250, 204461, 398916, 551093, 646073, 883626, 1030952, 1397083, 2522506, 3875455, 5128718, 7741307, 8860676
Offset: 1

Views

Author

Gus Wiseman, Jun 26 2018

Keywords

Comments

A Fermi-Dirac prime (A050376) is a number of the form p^(2^k) where p is prime and k >= 0.

Examples

			The a(6) = 7 partitions of 9 into Fermi-Dirac primes are (9), (54), (72), (333), (432), (522), (3222).
		

Crossrefs

Programs

  • Mathematica
    nn=60;
    FDpQ[n_]:=With[{f=FactorInteger[n]},n>1&&Length[f]==1&&MatchQ[FactorInteger[2f[[1,2]]],{{2,_}}]]
    FDprimeList=Select[Range[nn],FDpQ];
    ser=Product[1/(1-x^d),{d,FDprimeList}];
    Table[SeriesCoefficient[ser,{x,0,FDprimeList[[n]]}],{n,Length[FDprimeList]}]

A316211 Number of strict integer partitions of n into Fermi-Dirac primes.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 2, 4, 4, 4, 6, 4, 9, 5, 10, 8, 11, 11, 12, 15, 13, 19, 16, 21, 21, 24, 26, 27, 32, 31, 37, 37, 42, 44, 47, 52, 53, 61, 61, 69, 71, 78, 82, 88, 95, 99, 108, 112, 122, 128, 137, 144, 154, 163, 172, 184, 193, 206, 216, 230, 242, 256
Offset: 0

Views

Author

Gus Wiseman, Jun 26 2018

Keywords

Comments

A Fermi-Dirac prime (A050376) is a number of the form p^(2^k) where p is prime and k >= 0.

Examples

			The a(16) = 9 strict integer partitions of 16 into Fermi-Dirac primes:
(16),
(9,7), (11,5), (13,3),
(7,5,4), (9,4,3), (9,5,2), (11,3,2),
(7,4,3,2).
		

Crossrefs

Programs

  • Mathematica
    nn=60;
    FDpQ[n_]:=With[{f=FactorInteger[n]},n>1&&Length[f]==1&&MatchQ[FactorInteger[2f[[1,2]]],{{2,_}}]]
    FDprimeList=Select[Range[nn],FDpQ];
    ser=Product[1+x^d,{d,FDprimeList}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}]

Formula

O.g.f.: Product_d (1 + x^d) where the product is over all Fermi-Dirac primes (A050376).

A319827 FDH numbers of relatively prime strict integer partitions.

Original entry on oeis.org

2, 6, 8, 10, 12, 14, 18, 20, 21, 22, 24, 26, 28, 30, 32, 33, 34, 35, 38, 40, 42, 44, 46, 48, 50, 52, 54, 55, 56, 57, 58, 60, 62, 63, 66, 68, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 86, 88, 90, 91, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 112
Offset: 1

Views

Author

Gus Wiseman, Sep 28 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH number of a strict integer partition (y_1, ..., y_k) is f(y_1) * ... * f(y_k).

Examples

			The sequence of all relatively prime strict integer partitions begins: (1), (2,1), (3,1), (4,1), (3,2), (5,1), (6,1), (4,3), (5,2), (7,1), (3,2,1), (8,1), (5,3), (4,2,1).
		

Crossrefs

Programs

  • Mathematica
    nn=200;
    FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}:>2^(m-1)]]]]];
    FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Select[Range[nn],GCD@@(FDfactor[#]/.FDrules)==1&]

A240230 Table for the unique factorization of integers >= 2 into terms of A186285 or their squares.

Original entry on oeis.org

1, 2, 3, 2, 2, 5, 2, 3, 7, 8, 3, 3, 2, 5, 11, 2, 2, 3, 13, 2, 7, 3, 5, 2, 8, 17, 2, 3, 3, 19, 2, 2, 5, 3, 7, 2, 11, 23, 3, 8, 5, 5, 2, 13, 27, 2, 2, 7, 29, 2, 3, 5, 31, 2, 2, 8, 3, 11, 2, 17, 5, 7, 2, 2, 3, 3, 37, 2, 19, 3, 13, 5, 8, 41, 2, 3, 7, 43, 2, 2, 11, 3, 3, 5, 2, 23, 47, 2, 3, 8, 7, 7, 2, 5, 5
Offset: 1

Views

Author

Wolfdieter Lang, May 15 2014

Keywords

Comments

The terms of A186285 are primes to powers of 3 (PtPP(p=3) primes to prime powers with p=3). See A050376 for PtPP(2), appearing in the OEIS as 'Fermi-Dirac' primes, because in this case the unique representation of n >= 2 works with distinct members of A050376, hence the multiplicity (occupation number) is either 0 (not present) or 1 (appearing once). For p=3 the multiplicities are 0, 1, 2. See the multiplicity sequences given in the examples. At position m the multiplicity for A186285(m), m >= 1, is recorded, and trailing zeros are omitted, except for n = 1.
In order to include n=1 one defines as its representation 1, even though 1 is not a member of A186285 (in order to have a unique representation for n >= 2 modulo commutation of factors).
The length of row n (the number of factors) is obtained from the (reversed) base 3 representation of the exponents of the primes appearing in the ordinary factorization of n, by adding all entries. E.g., n = 2^5*5^7 = 2500000 will have row length 6 because (5)(3r) = [2, 1] and (7)(3r) = [1, 2] (reversed base 3), leading to the 6 factors (2^2*8^1)*(5^1*125^2) = 2*2*5*8*125*125. The row length sequence is A240231 = [1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, ...].

Examples

			The irregular triangle a(n,k) starts (in the first part the factors are listed):
  n\k   1  2  3 ...     multiplicity sequence
  1:    1               0-sequence [repeat(0,)]
  2:    2               [1]
  3:    3               [0, 1]
  4:    2, 2            [2]
  5:    5               [0, 0, 1]
  6:    2, 3            [1, 1]
  7:    7               [0, 0, 0, 1]
  8:    8               [0, 0, 0, 0, 1]
  9:    3, 3            [0, 2]
  10:   2, 5            [1, 0, 1]
  11:  11               [0, 0, 0, 0, 0, 1]
  12:   2, 2, 3         [2, 1]
  13:  13               [0, 0, 0, 0, 0, 0, 1]
  14:   2, 7            [1, 0, 0, 1]
  15:   3, 5            [0, 1, 1]
  16:   2, 8            [1, 0, 0, 0, 1]
  17:  17               [0, 0, 0, 0, 0, 0, 0, 1]
  18:   2, 3, 3         [1, 2]
  19:  19               [0, 0, 0, 0, 0, 0, 0, 0, 1]
  20:   2, 2, 5         [2, 0, 1]
...(reformatted - _Wolfdieter Lang_, May 16 2014)
		

Crossrefs

Programs

  • Mathematica
    With[{s = Select[Select[Range[53], PrimePowerQ], IntegerQ@Log[3, FactorInteger[#][[1, -1]]] &]}, {{1}}~Join~Table[Reverse@ Rest@ NestWhileList[Function[{k, m}, {k/#, #} &@ SelectFirst[Reverse@ TakeWhile[s, # <= k &], Divisible[k, #] &]] @@ # &, {n, 1}, First@ # > 1 &][[All, -1]], {n, 2, Max@ s}]] // Flatten (* Michael De Vlieger, Aug 14 2017 *)

A299758 Largest FDH number of a strict integer partition of n.

Original entry on oeis.org

1, 2, 3, 6, 8, 12, 24, 30, 42, 60, 120, 168, 216, 280, 420, 840, 1080, 1512, 1890, 2520, 3780, 7560, 9240, 11880, 16632, 20790, 27720, 41580, 83160, 98280, 120960, 154440, 216216, 270270, 360360, 540540, 1081080, 1330560, 1572480, 1921920, 2471040, 3459456, 4324320
Offset: 1

Views

Author

Gus Wiseman, Feb 18 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. Every positive integer n has a unique factorization of the form n = f(s_1)*...*f(s_k) where the s_i are strictly increasing positive integers. This determines a unique strict integer partition (s_k...s_1) whose FDH number is then defined to be n.

Examples

			Sequence of strict integer partitions realizing each maximum begins: () (1) (2) (21) (31) (32) (321) (421) (521) (432) (4321) (5321) (6321) (5431) (5432) (54321) (64321) (65321) (65421) (65431) (65432).
		

Crossrefs

Programs

  • Mathematica
    nn=150;
    FDprimeList=Select[Range[nn],MatchQ[FactorInteger[#],{{?PrimeQ,?(MatchQ[FactorInteger[2#],{{2,_}}]&)}}]&];
    Table[Max[Times@@FDprimeList[[#]]&/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,Length[FDprimeList]}]

A316228 Numbers whose Fermi-Dirac prime factorization sums to a Fermi-Dirac prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 28, 29, 31, 34, 36, 37, 39, 40, 41, 43, 46, 47, 48, 49, 52, 53, 55, 56, 58, 59, 61, 63, 66, 67, 71, 73, 76, 79, 81, 82, 83, 88, 89, 90, 94, 97, 100, 101, 103, 104, 107, 108, 109, 112
Offset: 1

Views

Author

Gus Wiseman, Jun 27 2018

Keywords

Comments

A Fermi-Dirac prime (A050376) is a number of the form p^(2^k) where p is prime and k >= 0. Every positive integer has a unique factorization into distinct Fermi-Dirac primes.

Examples

			Sequence of multiarrows in the form "number: sum <= factors" begins:
   2:  2 <= {2}
   3:  3 <= {3}
   4:  4 <= {4}
   5:  5 <= {5}
   6:  5 <= {2,3}
   7:  7 <= {7}
   9:  9 <= {9}
  10:  7 <= {2,5}
  11: 11 <= {11}
  12:  7 <= {3,4}
  13: 13 <= {13}
  14:  9 <= {2,7}
  16: 16 <= {16}
  17: 17 <= {17}
  18: 11 <= {2,9}
  19: 19 <= {19}
  20:  9 <= {4,5}
  22: 13 <= {2,11}
  23: 23 <= {23}
  24:  9 <= {2,3,4}
		

Crossrefs

Programs

  • Mathematica
    FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    Select[Range[2,200],Length[FDfactor[Total[FDfactor[#]]]]==1&]

A316265 FDH numbers of strict integer partitions with prime parts.

Original entry on oeis.org

1, 3, 4, 7, 11, 12, 19, 21, 25, 28, 33, 41, 44, 47, 57, 61, 75, 76, 77, 83, 84, 97, 100, 121, 123, 132, 133, 139, 141, 151, 164, 169, 175, 183, 188, 197, 209, 228, 231, 233, 241, 244, 249, 271, 275, 287, 289, 291, 300, 307, 308, 329, 332, 347, 361, 363, 388
Offset: 1

Views

Author

Gus Wiseman, Jun 28 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH number of a strict integer partition (y_1,...,y_k) is f(y_1)*...*f(y_k).

Examples

			Sequence of strict integer partitions with prime parts, preceded by their FDH numbers, begins:
   1: ()
   3: (2)
   4: (3)
   7: (5)
  11: (7)
  12: (3,2)
  19: (11)
  21: (5,2)
  25: (13)
  28: (5,3)
  33: (7,2)
  41: (17)
  44: (7,3)
  47: (19)
  57: (11,2)
  61: (23)
  75: (13,2)
  76: (11,3)
  77: (7,5)
  83: (29)
  84: (5,3,2)
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Select[Range[nn],And@@PrimeQ/@(FDfactor[#]/.FDrules)&]
Previous Showing 21-30 of 40 results. Next