A316202
Number of integer partitions of n into Fermi-Dirac primes.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 3, 4, 5, 7, 8, 11, 13, 17, 20, 25, 31, 37, 45, 54, 65, 77, 92, 109, 128, 152, 177, 208, 242, 283, 327, 380, 439, 506, 583, 669, 768, 878, 1004, 1144, 1303, 1482, 1681, 1906, 2156, 2438, 2750, 3101, 3490, 3924, 4407, 4942, 5538, 6197, 6929
Offset: 0
The a(12) = 13 integer partitions of 12 into Fermi-Dirac primes:
(75), (93),
(444), (543), (552), (732),
(3333), (4332), (4422), (5322),
(33222), (42222),
(222222).
-
nn=60;
FDpQ[n_]:=With[{f=FactorInteger[n]},n>1&&Length[f]==1&&MatchQ[FactorInteger[2f[[1,2]]],{{2,_}}]]
FDprimeList=Select[Range[nn],FDpQ];
ser=Product[1/(1-x^d),{d,FDprimeList}];
Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}]
A305831
Number of connected components of the strict integer partition with FDH number n.
Original entry on oeis.org
0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 2, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1
Offset: 1
Let f = A050376. The FD-factorization of 1683 is 9*11*17 = f(6)*f(7)*f(10). The connected components of {6,7,10} are {{7},{6,10}}, so a(1683) = 2.
Cf.
A048143,
A050376,
A064547,
A213925,
A299755,
A299756,
A304714,
A304716,
A305078,
A305079,
A305829,
A305830,
A305832.
-
FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
nn=200;FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
Table[Length[zsm[FDfactor[n]/.FDrules]],{n,nn}]
A305832
Number of connected components of the n-th FDH set-system.
Original entry on oeis.org
0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 2, 1, 1, 2, 1, 3, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1
Offset: 1
Let f = A050376. The FD-factorization of 765 is 5*9*17 or f(4)*f(6)*f(10) = f(4)*f(2*3)*f(2*5) with connected components {{{4}},{{2,3},{2,5}}}, so a(765) = 2.
Cf.
A048143,
A050376,
A064547,
A213925,
A299755,
A299756,
A304714,
A304716,
A305078,
A305079,
A305829,
A305830,
A305831.
-
FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>1]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
nn=100;FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
Table[Length[csm[FDfactor[#]/.FDrules&/@(FDfactor[n]/.FDrules)]],{n,nn}]
A316210
Number of integer partitions of the n-th Fermi-Dirac prime into Fermi-Dirac primes.
Original entry on oeis.org
1, 1, 2, 2, 4, 7, 11, 17, 31, 37, 54, 109, 152, 283, 380, 878, 1482, 1906, 3101, 3924, 6197, 11915, 14703, 27063, 40016, 48450, 84633, 101419, 121250, 204461, 398916, 551093, 646073, 883626, 1030952, 1397083, 2522506, 3875455, 5128718, 7741307, 8860676
Offset: 1
The a(6) = 7 partitions of 9 into Fermi-Dirac primes are (9), (54), (72), (333), (432), (522), (3222).
Cf.
A000586,
A000607,
A050376,
A064547,
A213925,
A279065,
A299755,
A299757,
A305829,
A316202,
A316211,
A316220.
-
nn=60;
FDpQ[n_]:=With[{f=FactorInteger[n]},n>1&&Length[f]==1&&MatchQ[FactorInteger[2f[[1,2]]],{{2,_}}]]
FDprimeList=Select[Range[nn],FDpQ];
ser=Product[1/(1-x^d),{d,FDprimeList}];
Table[SeriesCoefficient[ser,{x,0,FDprimeList[[n]]}],{n,Length[FDprimeList]}]
A316211
Number of strict integer partitions of n into Fermi-Dirac primes.
Original entry on oeis.org
1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 2, 4, 4, 4, 6, 4, 9, 5, 10, 8, 11, 11, 12, 15, 13, 19, 16, 21, 21, 24, 26, 27, 32, 31, 37, 37, 42, 44, 47, 52, 53, 61, 61, 69, 71, 78, 82, 88, 95, 99, 108, 112, 122, 128, 137, 144, 154, 163, 172, 184, 193, 206, 216, 230, 242, 256
Offset: 0
The a(16) = 9 strict integer partitions of 16 into Fermi-Dirac primes:
(16),
(9,7), (11,5), (13,3),
(7,5,4), (9,4,3), (9,5,2), (11,3,2),
(7,4,3,2).
Cf.
A000586,
A000607,
A050376,
A064547,
A213925,
A279065,
A299755,
A299757,
A305829,
A316202,
A316210,
A316220.
-
nn=60;
FDpQ[n_]:=With[{f=FactorInteger[n]},n>1&&Length[f]==1&&MatchQ[FactorInteger[2f[[1,2]]],{{2,_}}]]
FDprimeList=Select[Range[nn],FDpQ];
ser=Product[1+x^d,{d,FDprimeList}];
Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}]
A319827
FDH numbers of relatively prime strict integer partitions.
Original entry on oeis.org
2, 6, 8, 10, 12, 14, 18, 20, 21, 22, 24, 26, 28, 30, 32, 33, 34, 35, 38, 40, 42, 44, 46, 48, 50, 52, 54, 55, 56, 57, 58, 60, 62, 63, 66, 68, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 86, 88, 90, 91, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 112
Offset: 1
The sequence of all relatively prime strict integer partitions begins: (1), (2,1), (3,1), (4,1), (3,2), (5,1), (6,1), (4,3), (5,2), (7,1), (3,2,1), (8,1), (5,3), (4,2,1).
-
nn=200;
FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}:>2^(m-1)]]]]];
FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
Select[Range[nn],GCD@@(FDfactor[#]/.FDrules)==1&]
A240230
Table for the unique factorization of integers >= 2 into terms of A186285 or their squares.
Original entry on oeis.org
1, 2, 3, 2, 2, 5, 2, 3, 7, 8, 3, 3, 2, 5, 11, 2, 2, 3, 13, 2, 7, 3, 5, 2, 8, 17, 2, 3, 3, 19, 2, 2, 5, 3, 7, 2, 11, 23, 3, 8, 5, 5, 2, 13, 27, 2, 2, 7, 29, 2, 3, 5, 31, 2, 2, 8, 3, 11, 2, 17, 5, 7, 2, 2, 3, 3, 37, 2, 19, 3, 13, 5, 8, 41, 2, 3, 7, 43, 2, 2, 11, 3, 3, 5, 2, 23, 47, 2, 3, 8, 7, 7, 2, 5, 5
Offset: 1
The irregular triangle a(n,k) starts (in the first part the factors are listed):
n\k 1 2 3 ... multiplicity sequence
1: 1 0-sequence [repeat(0,)]
2: 2 [1]
3: 3 [0, 1]
4: 2, 2 [2]
5: 5 [0, 0, 1]
6: 2, 3 [1, 1]
7: 7 [0, 0, 0, 1]
8: 8 [0, 0, 0, 0, 1]
9: 3, 3 [0, 2]
10: 2, 5 [1, 0, 1]
11: 11 [0, 0, 0, 0, 0, 1]
12: 2, 2, 3 [2, 1]
13: 13 [0, 0, 0, 0, 0, 0, 1]
14: 2, 7 [1, 0, 0, 1]
15: 3, 5 [0, 1, 1]
16: 2, 8 [1, 0, 0, 0, 1]
17: 17 [0, 0, 0, 0, 0, 0, 0, 1]
18: 2, 3, 3 [1, 2]
19: 19 [0, 0, 0, 0, 0, 0, 0, 0, 1]
20: 2, 2, 5 [2, 0, 1]
...(reformatted - _Wolfdieter Lang_, May 16 2014)
-
With[{s = Select[Select[Range[53], PrimePowerQ], IntegerQ@Log[3, FactorInteger[#][[1, -1]]] &]}, {{1}}~Join~Table[Reverse@ Rest@ NestWhileList[Function[{k, m}, {k/#, #} &@ SelectFirst[Reverse@ TakeWhile[s, # <= k &], Divisible[k, #] &]] @@ # &, {n, 1}, First@ # > 1 &][[All, -1]], {n, 2, Max@ s}]] // Flatten (* Michael De Vlieger, Aug 14 2017 *)
A299758
Largest FDH number of a strict integer partition of n.
Original entry on oeis.org
1, 2, 3, 6, 8, 12, 24, 30, 42, 60, 120, 168, 216, 280, 420, 840, 1080, 1512, 1890, 2520, 3780, 7560, 9240, 11880, 16632, 20790, 27720, 41580, 83160, 98280, 120960, 154440, 216216, 270270, 360360, 540540, 1081080, 1330560, 1572480, 1921920, 2471040, 3459456, 4324320
Offset: 1
Sequence of strict integer partitions realizing each maximum begins: () (1) (2) (21) (31) (32) (321) (421) (521) (432) (4321) (5321) (6321) (5431) (5432) (54321) (64321) (65321) (65421) (65431) (65432).
-
nn=150;
FDprimeList=Select[Range[nn],MatchQ[FactorInteger[#],{{?PrimeQ,?(MatchQ[FactorInteger[2#],{{2,_}}]&)}}]&];
Table[Max[Times@@FDprimeList[[#]]&/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,Length[FDprimeList]}]
A316228
Numbers whose Fermi-Dirac prime factorization sums to a Fermi-Dirac prime.
Original entry on oeis.org
2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 28, 29, 31, 34, 36, 37, 39, 40, 41, 43, 46, 47, 48, 49, 52, 53, 55, 56, 58, 59, 61, 63, 66, 67, 71, 73, 76, 79, 81, 82, 83, 88, 89, 90, 94, 97, 100, 101, 103, 104, 107, 108, 109, 112
Offset: 1
Sequence of multiarrows in the form "number: sum <= factors" begins:
2: 2 <= {2}
3: 3 <= {3}
4: 4 <= {4}
5: 5 <= {5}
6: 5 <= {2,3}
7: 7 <= {7}
9: 9 <= {9}
10: 7 <= {2,5}
11: 11 <= {11}
12: 7 <= {3,4}
13: 13 <= {13}
14: 9 <= {2,7}
16: 16 <= {16}
17: 17 <= {17}
18: 11 <= {2,9}
19: 19 <= {19}
20: 9 <= {4,5}
22: 13 <= {2,11}
23: 23 <= {23}
24: 9 <= {2,3,4}
-
FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
Select[Range[2,200],Length[FDfactor[Total[FDfactor[#]]]]==1&]
A316265
FDH numbers of strict integer partitions with prime parts.
Original entry on oeis.org
1, 3, 4, 7, 11, 12, 19, 21, 25, 28, 33, 41, 44, 47, 57, 61, 75, 76, 77, 83, 84, 97, 100, 121, 123, 132, 133, 139, 141, 151, 164, 169, 175, 183, 188, 197, 209, 228, 231, 233, 241, 244, 249, 271, 275, 287, 289, 291, 300, 307, 308, 329, 332, 347, 361, 363, 388
Offset: 1
Sequence of strict integer partitions with prime parts, preceded by their FDH numbers, begins:
1: ()
3: (2)
4: (3)
7: (5)
11: (7)
12: (3,2)
19: (11)
21: (5,2)
25: (13)
28: (5,3)
33: (7,2)
41: (17)
44: (7,3)
47: (19)
57: (11,2)
61: (23)
75: (13,2)
76: (11,3)
77: (7,5)
83: (29)
84: (5,3,2)
-
nn=100;
FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
Select[Range[nn],And@@PrimeQ/@(FDfactor[#]/.FDrules)&]
Comments