cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A309591 Numbers k with 1 zero in a fundamental period of A006190 mod k.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 12, 18, 23, 27, 36, 43, 46, 53, 54, 61, 69, 79, 81, 86, 92, 101, 103, 106, 107, 108, 122, 127, 129, 131, 138, 139, 158, 159, 162, 172, 173, 179, 183, 191, 199, 202, 206, 207, 211, 212, 214, 237, 243, 244, 251, 254, 258, 262, 263, 276
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Numbers k such that A322906(k) = 1.
The odd numbers k satisfy A175182(k) == 2 (mod 4).

Crossrefs

Cf. A175182.
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+----------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | this seq
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • PARI
    for(k=1, 300, if(A322906(k)==1, print1(k, ", ")))

A309592 Numbers k with 2 zeros in a fundamental period of A006190 mod k.

Original entry on oeis.org

7, 8, 11, 14, 15, 16, 17, 19, 20, 21, 22, 24, 28, 30, 31, 32, 33, 34, 35, 38, 39, 40, 42, 44, 45, 47, 48, 49, 51, 52, 55, 56, 57, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 75, 76, 77, 78, 80, 83, 84, 85, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 100, 102, 104
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Numbers k such that A322906(k) = 2.
This sequence contains all numbers k such that 4 divides A322907(k). As a consequence, this sequence contains all numbers congruent to 7, 11, 15, 19, 31, 47 modulo 52.
This sequence contains all odd numbers k such that 8 divides A175182(k).

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+----------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | this seq
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • PARI
    for(k=1, 100, if(A322906(k)==2, print1(k, ", ")))

A309593 Numbers k with 4 zeros in a fundamental period of A006190 mod k.

Original entry on oeis.org

5, 10, 13, 25, 26, 29, 37, 41, 50, 58, 65, 73, 74, 82, 89, 97, 109, 125, 130, 137, 145, 146, 149, 157, 169, 178, 181, 185, 193, 194, 197, 205, 218, 229, 233, 241, 250, 269, 274, 281, 290, 293, 298, 314, 317, 325, 338, 349, 353, 362, 365, 370, 373, 377
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Numbers k such that A322906(k) = 4.
Also numbers k such that A214027(k) is odd.

Crossrefs

Cf. A322907.
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+----------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | this seq
* and also A053032 U {2}

Programs

  • PARI
    for(k=1, 400, if(A322906(k)==4, print1(k, ", ")))

A322907 Entry points for the 3-Fibonacci numbers A006190.

Original entry on oeis.org

1, 3, 2, 6, 3, 6, 8, 6, 6, 3, 4, 6, 13, 24, 6, 12, 8, 6, 20, 6, 8, 12, 22, 6, 15, 39, 18, 24, 7, 6, 32, 24, 4, 24, 24, 6, 19, 60, 26, 6, 7, 24, 42, 12, 6, 66, 48, 12, 56, 15, 8, 78, 26, 18, 12, 24, 20, 21, 12, 6, 30, 96, 24, 48, 39, 12, 68, 24, 22, 24, 72, 6
Offset: 1

Views

Author

Jianing Song, Jan 05 2019

Keywords

Comments

a(n) is the smallest k > 0 such that n divides A006190(k).
a(n) is also called the rank of A006190(n) modulo n.
For primes p == 1, 9, 17, 25, 29, 49 (mod 52), a(p) divides (p - 1)/2.
For primes p == 3, 23, 27, 35, 43, 51 (mod 52), a(p) divides p - 1, but a(p) does not divide (p - 1)/2.
For primes p == 5, 21, 33, 37, 41, 45 (mod 52), a(p) divides (p + 1)/2.
For primes p == 7, 11, 15, 19, 31, 47 (mod 52), a(p) divides p + 1, but a(p) does not divide (p + 1)/2.
a(n) <= (12/7)*n for all n, where the equality holds if and only if n = 2*7^e, e >= 1.

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = k*x(n+1) + x(n). Then the periods, ranks and the ratios of the periods to the ranks modulo a given integer n are given by:
k = 1: A001175 (periods), A001177 (ranks), A001176 (ratios).
k = 2: A175181 (periods), A214028 (ranks), A214027 (ratios).
k = 3: A175182 (periods), this sequence (ranks), A322906 (ratios).
Cf. A006190.

Programs

  • PARI
    A006190(m) = ([3, 1; 1, 0]^m)[2, 1]
    a(n) = my(i=1); while(A006190(i)%n!=0, i++); i

Formula

a(m*n) = a(m)*a(n) if gcd(m, n) = 1.
For odd primes p, a(p^e) = p^(e-1)*a(p) if p^2 does not divide a(p). Any counterexample would be a 3-Wall-Sun-Sun prime.
a(2^e) = 3 if e = 1, 6 if e = 2 and 3*2^(e-2) if e >= 3. a(13^e) = 13^e, e >= 1.

A308947 a(n) = A000129(A214028(n)+1) mod n.

Original entry on oeis.org

0, 1, 2, 1, 2, 5, 1, 1, 8, 9, 10, 5, 5, 1, 11, 1, 16, 17, 18, 1, 8, 21, 1, 1, 7, 25, 26, 1, 12, 11, 1, 1, 32, 33, 29, 17, 31, 37, 14, 1, 1, 29, 42, 21, 26, 1, 1, 1, 1, 49, 16, 1, 30, 53, 21, 1, 56, 57, 58, 41, 50, 1, 8, 1, 8, 65, 66, 33, 47, 29, 1, 1, 72, 73
Offset: 1

Views

Author

Jianing Song, Jul 02 2019

Keywords

Comments

A214028(n) is the smallest k > 0 such that n divides A000129(k).
Let M = [{2, 1}, {1, 0}], I = [{1, 0}, {0, 1}] is the 2 X 2 identity matrix, then A214028(n) is the smallest k > 0 such that M^k == r*I (mod n) for some r such that 0 <= r < n, and a(n) gives the value r.
A214027(n) is the multiplicative order of a(n) modulo n, which can only take value 1, 2 or 4.

Examples

			For n = 7, {A000129(n) mod 7 : n > 0} = {1, 2, 5, 5, 1, 0, 1, ...}, so a(7) = 1. Also, A214028(7) = 6, and M^6 mod 7 = [{1, 0}, {0, 1}], so a(7) = 1.
		

Crossrefs

Similar sequences: A217036, A308948.

Programs

  • Mathematica
    a[n_] := For[k = 1, True, k++, If[Divisible[Fibonacci[k, 2], n], Return[ Mod[ Fibonacci[k+1, 2], n]]]];
    Array[a, 100] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    a(n) = my(M=[2, 1; 1, 0]); for(k=1, 4*n/3, if((Mod(M,n)^k)[2,1]==0, return(lift((Mod(M,n)^k)[1,1]))))

Formula

Also a(n) = A000129(A214028(n)-1) mod n.
a(2^e) = 1; a(p^e) = a(p)^(p^(e-1)) mod p^e for odd primes p.
For odd primes p, a(p^e) = 1 if and only if A214028(p) == 2 (mod 4); a(p^e) = p^e - 1 if and only if 4 divides A214028(p).
Previous Showing 21-25 of 25 results.