A271555
a(n) = G_n(8), where G is the Goodstein function defined in A266201.
Original entry on oeis.org
8, 80, 553, 6310, 93395, 1647195, 33554571, 774841151, 20000000211, 570623341475, 17832200896811, 605750213184854, 22224013651116433, 875787780761719208, 36893488147419103751, 1654480523772673528938, 78692816150593075151501, 3956839311320627178248684
Offset: 0
G_1(8) = B_2(8)-1 = B_2(2^(2+1))-1 = 3^(3+1)-1 = 80;
G_2(8) = B_3(2*3^3+2*3^2+2*3+2)-1 = 2*4^4+2*4^2+2*4+2-1 = 553;
G_3(8) = B_4(2*4^4+2*4^2+2*4+1)-1 = 2*5^5+2*5^2+2*5+1-1 = 6310;
G_4(8) = B_5(2*5^5+2*5^2+2*5)-1 = 2*6^6+2*6^2+2*6-1 = 93395;
G_5(8) = B_6(2*6^6+2*6^2+6+5)-1 = 2*7^7+2*7^2+7+5-1 = 1647195;
G_6(8) = B_7(2*7^7+2*7^2+7+4)-1 = 2*8^8+2*8^2+8+4-1 = 33554571;
G_7(8) = B_8(2*8^8+2*8^2+8+3)-1 = 2*9^9+2*9^2+9+3-1 = 774841151.
-
lista(nn) = {print1(a = 8, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }
A271556
a(n) = G_n(9), where G is the Goodstein function defined in A266201.
Original entry on oeis.org
9, 81, 1023, 9842, 140743, 2471826, 50333399, 1162263921, 30000003325, 855935016215, 26748301350411, 908625319783885, 33336020476682897, 1313681671142588955, 55340232221128667935, 2481720785659010308168, 118039224225889612744771, 5935258966980940767393628
Offset: 0
G_1(9) = B_2(9)-1 = B_2(2^(2+1)+1)-1 = 3^(3+1) + 1-1 = 81;
G_2(9) = B_3(3^(3+1))-1 = 4^(4+1)-1 = 1023;
G_3(9) = B_4(3*4^4 + 3*4^3 + 3*4^2 + 3*4 + 3)-1 = 3*5^5 + 3*5^3 + 3*5^2 + 3*5 + 3-1 = 9842;
G_4(9) = B_5(3*5^5 + 3*5^3 + 3*5^2 + 3*5 + 2)-1 = 3*6^6 + 3*6^3 + 3*6^2 + 3*6 + 2-1 = 140743;
G_5(9) = B_6(3*6^6 + 3*6^3 + 3*6^2 + 3*6 + 1)-1 = 3*7^7 + 3*7^3 + 3*7^2 + 3*7 + 1-1 = 2471826;
G_6(9) = B_7(3*7^7 + 3*7^3 + 3*7^2 + 3*7)-1 = 3*8^8 + 3*8^3 + 3*8^2 + 3*8-1 = 50333399.
-
lista(nn) = {print1(a = 9, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }
A271557
a(n) = G_n(10), where G is the Goodstein function defined in A266201.
Original entry on oeis.org
10, 83, 1025, 15625, 279935, 4215754, 84073323, 1937434592, 50000555551, 1426559238830, 44580503598539, 1514375534972427, 55560034130686045, 2189469451908364943, 92233720368553350471, 4136201309431691363859, 196732040376482697880697, 9892098278301567958688175
Offset: 0
G_1(10) = B_2(10)-1 = B_2(2^(2+1)+2)-1 = 3^(3+1)+3-1 = 83;
G_2(10) = B_3(3^(3+1)+2)-1 = 4^(4+1)+2-1 = 1025;
G_3(10) = B_4(4^(4+1)+1)-1 = 5^(5+1)+1-1 = 15625;
G_4(10) = B_5(5*5^(5+1))-1 = 6^(6+1)-1= 279935;
G_5(10) = B_6(5*6^6+5*6^5+5*6^4+5*6^3+5*6^2+5*6+5)-1 = 5*7^7+5*7^5+5*7^4+5*7^3+5*7^2+5*7+5-1 = 4215754;
G_6(10) = B_7(5*7^7+5*7^5+5*7^4+5*7^3+5*7^2+5*7+4)-1 = 5*8^8+5*8^5+5*8^4+5*8^3+5*8^2+5*8+4-1 = 84073323;
G_7(10) = B_8(5*8^8+5*8^5+5*8^4+5*8^3+5*8^2+5*8+3)-1 = 5*9^9+5*9^5+5*9^4+5*9^3+5*9^2+5*9+3-1 = 1937434592;
G_8(10) = B_9(5*9^9+5*9^5+5*9^4+5*9^3+5*9^2+5*9+2)-1 = 5*10^10+5*10^5+5*10^4+5*10^3+5*10^2+5*10+2-1 = 50000555551.
Cf.
A056193: G_n(4),
A059933: G_n(16),
A211378: G_n(19),
A215409: G_n(3),
A222117: G_n(15),
A266204: G_n(5),
A266205: G_n(6),
A271554: G_n(7),
A271555: G_n(8),
A271556: G_n(9),
A266201: G_n(n).
-
lista(nn) = {print1(a = 10, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }
A056041
Value for which b(a(n))=0 when b(2)=n and b(k+1) is calculated by writing b(k) in base k, reading this as being written in base k+1 and then subtracting 1.
Original entry on oeis.org
2, 3, 5, 7, 23, 63, 383, 2047
Offset: 0
a(3)=7 because starting with b(2)=3=11 base 2, we get b(3)=11-1 base 3=10 base 3=3, b(4)=10-1 base 4=3, b(5)=3-1 base 5=2, b(6)=2-1 base 6=1 and b(7)=1-1 base 7=0.
- R. L. Goodstein, On the Restricted Ordinal Theorem, J. Symb. Logic 9, 33-41, 1944.
- L. Kirby, and J. Paris, Accessible independence results for Peano arithmetic, Bull. London Mathematical Society, 14 (1982), 285-293.
- J. Tromp, Programming Pearls
- Eric Weisstein's World of Mathematics, Goodstein Sequence
- Wikipedia, Goodstein's theorem
A222112
Initial step in Goodstein sequences: write n-1 in hereditary binary representation, then bump to base 3.
Original entry on oeis.org
0, 1, 3, 4, 27, 28, 30, 31, 81, 82, 84, 85, 108, 109, 111, 112, 7625597484987, 7625597484988, 7625597484990, 7625597484991, 7625597485014, 7625597485015, 7625597485017, 7625597485018, 7625597485068, 7625597485069, 7625597485071, 7625597485072, 7625597485095
Offset: 1
n = 19: 19 - 1 = 18 = 2^4 + 2^1 = 2^2^2 + 2^1
-> a(19) = 3^3^3 + 3^1 = 7625597484990;
n = 20: 20 - 1 = 19 = 2^4 + 2^1 + 2^0 = 2^2^2 + 2^1 + 2^0
-> a(20) = 3^3^3 + 3^1 + 3^0 = 7625597484991;
n = 21: 21 - 1 = 20 = 2^4 + 2^2 = 2^2^2 + 2^2
-> a(21) = 3^3^3 + 3^3 = 7625597485014.
- Helmut Schwichtenberg and Stanley S. Wainer, Proofs and Computations, Cambridge University Press, 2012; 4.4.1, page 148ff.
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- R. L. Goodstein, On the Restricted Ordinal Theorem, The Journal of Symbolic Logic, Vol. 9, No. 2, Jun., 1944.
- Wikipedia, Goodstein's Theorem
- Reinhard Zumkeller, Haskell programs for Goodstein sequences
-
-- See Link
-
A222112(n)=sum(i=1, #n=binary(n-1), if(n[i],3^if(#n-i<2, #n-i, A222112(#n-i+1)))) \\ See A266201 for more general code. - M. F. Hasler, Feb 13 2017, edited Feb 19 2017
A271558
a(n) = G_n(11), where G is the Goodstein function defined in A266201.
Original entry on oeis.org
11, 84, 1027, 15627, 279937, 5764801, 134217727, 2749609302, 70077777775, 1997331745490, 62412976762503, 2120126221988686, 77784048573561751, 3065257233947460930, 129127208517971179375, 5790681833207409243109, 275424856527080300658781, 13848937589622201728586799
Offset: 0
G_1(11) = B_2(11)-1 = B_2(2^(2+1)+2+1)-1 = 3^(3+1)+3+1-1 = 84;
G_2(11) = B_3(3^(3+1)+3)-1 = 4^(4+1)+4-1 = 1027;
G_3(11) = B_4(4^(4+1)+3)-1 = 5^(5+1)+3-1 = 15627;
G_4(11) = B_5(5^(5+1)+2)-1 = 6^(6+1)+2-1 = 279937;
G_5(11) = B_6(6^(6+1)+1)-1 = 7^(7+1)+1-1 = 5764801;
G_6(11) = B_7(7^(7+1))-1 = 8^(8+1)-1 = 134217727.
Cf.
A056193: G_n(4),
A059933: G_n(16),
A211378: G_n(19),
A215409: G_n(3),
A222117: G_n(15),
A266204: G_n(5),
A266205: G_n(6),
A271554: G_n(7),
A271555: G_n(8),
A271556: G_n(9),
A271557: G_n(10),
A266201: G_n(n).
-
lista(nn) = {print1(a = 11, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }
A271559
a(n) = G_n(12), where G is the Goodstein function defined in A266201.
Original entry on oeis.org
12, 107, 1065, 15685, 280019, 5764910, 134217867, 3486784574, 100000000211, 3138428376974, 106993205379371, 3937376385699637, 155568095557812625, 6568408355712891083, 295147905179352826375, 14063084452067724991593, 708235345355337676358285, 37589973457545958193356327
Offset: 0
G_1(12) = B_2(12)-1 = B_2(2^(2+1)+2^2)-1 = 3^(3+1)+3^3-1 = 107;
G_2(12) = B_3(3^(3+1)+2*3^2+2*3+2)-1 = 4^(4+1)+2*4^2+2*4+2-1 = 1065;
G_3(12) = B_4(4^(4+1)+2*4^2+2*4+1)-1 = 5^(5+1)+2*5^2+2*5+1-1 = 15685;
G_4(12) = B_5(5^(5+1)+2*5^2+2*5)-1 = 6^(6+1)+2*6^2+2*6-1 = 280019;
G_5(12) = B_6(6^(6+1)+2*6^2+6+5)-1 = 7^(7+1)+2*7^2+7+5-1 = 5764910;
G_6(12) = B_7(7^(7+1)+2*7^2+7+4)-1 = 8^(8+1)+2*8^2+8+4-1 = 134217867;
G_7(12) = B_8(8^(8+1)+2*8^2+8+3)-1 = 9^(9+1)+2*9^2+9+3-1 = 3486784574.
Cf.
A056193: G_n(4),
A059933: G_n(16),
A211378: G_n(19),
A215409: G_n(3),
A222117: G_n(15),
A266204: G_n(5),
A266205: G_n(6),
A271554: G_n(7),
A271555: G_n(8),
A271556: G_n(9),
A271557: G_n(10),
A271558: G_n(11),
A266201: G_n(n).
-
lista(nn) = {print1(a = 12, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }
A271560
a(n) = G_n(13), where G is the Goodstein function defined in A266201.
Original entry on oeis.org
13, 108, 1279, 16092, 280711, 5765998, 134219479, 3486786855, 100000003325, 3138428381103, 106993205384715, 3937376385706415, 155568095557821073, 6568408355712901455, 295147905179352838943, 14063084452067725006646, 708235345355337676376131, 37589973457545958193377292
Offset: 0
G_1(13) = B_2(13)-1 = B_2(2^(2+1)+2^2+1)-1 = 3^(3+1)+3^3+1-1 = 108;
G_2(13) = B_3(3^(3+1)+3^3)-1 = 4^(4+1)+4^4-1 = 1279;
G_3(13) = B_4(4^(4+1)+3*4^3+3*4^2+3*4+3)-1 = 5^(5+1)+3*5^3+3*5^2+3*5+3-1 = 16092;
G_4(13) = B_5(5^(5+1)+3*5^3+3*5^2+3*5+2)-1 = 6^(6+1)+3*6^3+3*6^2+3*6+2-1 = 280711;
G_5(13) = B_6(6^(6+1)+3*6^3+3*6^2+3*6+1)-1 = 7^(7+1)+3*7^3+3*7^2+3*7+1-1 = 5765998;
G_6(13) = B_7(7^(7+1)+3*7^3+3*7^2+3*7)-1 = 8^(8+1)+3*8^3+3*8^2+3*8-1 = 134219479;
G_7(13) = B_8(8^(8+1)+3*8^3+3*8^2+2*8+7)-1 = 9^(9+1)+3*9^3+3*9^2+2*9+7-1 = 3486786855.
Cf.
A056193: G_n(4),
A059933: G_n(16),
A211378: G_n(19),
A215409: G_n(3),
A222117: G_n(15),
A266204: G_n(5),
A266205: G_n(6),
A271554: G_n(7),
A271555: G_n(8),
A271556: G_n(9),
A271557: G_n(10),
A271558: G_n(11),
A271559: G_n(12),
A266201: G_n(n).
-
lista(nn) = {my(a=13); print1(a, ", "); for (n=2, nn, my(pd = Pol(digits(a, n)), q = sum(k=0, poldegree(pd), my(c=polcoeff(pd, k)); if (c, c*x^subst(Pol(digits(k, n)), x, n+1), 0))); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }
A271561
a(n) = G_n(14), where G is the Goodstein function defined in A266201.
Original entry on oeis.org
14, 110, 1281, 18750, 326591, 5862840, 134404971, 3487116548, 100000555551, 3138429262496, 106993206736331, 3937376387710451, 155568095560708189, 6568408355716958693, 295147905179358418247, 14063084452067732533983, 708235345355337686361209, 37589973457545958206423881
Offset: 0
G_1(14) = B_2(14)-1 = B_2(2^(2+1)+2^2+2)-1 = 3^(3+1)+3^3+3-1 = 110;
G_2(14) = B_3(3^(3+1)+3^3+2)-1 = 4^(4+1)+4^4+2-1 = 1281;
G_3(14) = B_4(4^(4+1)+4^4+1)-1 = 5^(5+1)+5^5+1-1 = 18750;
G_4(14) = B_5(5^(5+1)+5^5)-1 = 6^(6+1)+6^6-1 = 326591.
Cf.
A056193: G_n(4),
A059933: G_n(16),
A211378: G_n(19),
A215409: G_n(3),
A222117: G_n(15),
A266204: G_n(5),
A266205: G_n(6),
A271554: G_n(7),
A271555: G_n(8),
A271556: G_n(9),
A271557: G_n(10),
A271558: G_n(11),
A271559: G_n(12),
A271560: G_n(13),
A266201: G_n(n).
-
lista(nn) = {print1(a = 14, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }
A271562
a(n) = G_n(17), where G is the Goodstein function defined in A266201.
Original entry on oeis.org
17, 7625597484987, 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084095
Offset: 0
G_1(17) = B_2(17)-1 = B_2(2^2^2+1)-1 = 3^3^3+1-1 = 7625597484987;
G_2(17) = B_3(3^3^3)-1 = 4^4^4-1 has 155 digits;
G_3(17) has 328 digits.
Cf.
A056193: G_n(4),
A059933: G_n(16),
A211378: G_n(19),
A215409: G_n(3),
A222117: G_n(15),
A266204: G_n(5),
A266205: G_n(6),
A271554: G_n(7),
A271555: G_n(8),
A271556: G_n(9),
A271557: G_n(10),
A271558: G_n(11),
A271559: G_n(12),
A271560: G_n(13),
A271561: G_n(14),
A266201: G_n(n).
Comments