cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A216618 Numbers k such that 10^k + k^10 + 1 is prime.

Original entry on oeis.org

0, 726, 1974, 3336
Offset: 1

Views

Author

Vincenzo Librandi, Sep 11 2012

Keywords

Comments

a(5) > 10^5. - Robert Price, Oct 06 2015

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 5000], PrimeQ[10^# + #^10 + 1] &]
  • PARI
    is(n)=ispseudoprime(10^n+n^10+1) \\ Charles R Greathouse IV, Jun 13 2017

A216619 Numbers k such that 10^k + k^10 - 1 is prime.

Original entry on oeis.org

2, 8, 1592, 2380
Offset: 1

Views

Author

Vincenzo Librandi, Sep 11 2012

Keywords

Comments

Next term > 10^4.
a(5) > 10^5. - Robert Price, Oct 08 2015

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 5000], PrimeQ[10^# + #^10 - 1] &]
  • PARI
    is(n)=ispseudoprime(10^n+n^10-1) \\ Charles R Greathouse IV, Jun 13 2017

A216592 Numbers m such that 8^m + m^8 + 1 is prime.

Original entry on oeis.org

0, 108, 27018
Offset: 1

Views

Author

Vincenzo Librandi, Sep 09 2012

Keywords

Comments

Next term > 2*10^4.
a(4) > 10^5. - Robert Price, Oct 08 2015

Examples

			8^0 + 0^8 + 1 = 2, which is prime, so 0 is in the sequence.
		

Crossrefs

Cf. Numbers m such that k^m + m^k + 1 is prime: A100357 (k=2), A215441 (k=3), A216423 (k=4), A215442 (k=5), A243934 (k=6), A215444 (k=7), this sequence (k=8), A216618 (k=10), A216375 (k=11), A216421 (k=13).
Cf. Numbers m such that k^m + m^k - 1 is prime: A215439 (k=2), A215440 (k=3), A216424 (k=4), A215443 (k=5), A216425 (k=6), A215445 (k=7), A216591 (k=8), A216619 (k=10), A215446 (k=11), A216420 (k=13), A216422 (k=19).
Cf. Primes of form k^m + m^k + 1: A035325 (k=2), A215436 (k=3), A215438 (k=5).
Cf. Primes of form k^m + m^k - 1: A215434 (k=2), A215435 (k=3), A215437 (k=5).

Programs

  • Mathematica
    Select[Range[0, 10000], PrimeQ[8^# + #^8 + 1] &]
  • PARI
    is(n)=ispseudoprime(8^n+n^8+1) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(3) from Robert Price, Oct 08 2015
Previous Showing 11-13 of 13 results.