cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A215858 Number of simple labeled graphs on n nodes with exactly 8 connected components that are trees or cycles.

Original entry on oeis.org

1, 36, 1110, 31680, 904299, 26603148, 821278744, 26864874465, 935625630797, 34750489933016, 1375999952017938, 57998361908305494, 2596646585329104847, 123180358220543885268, 6175880603945440333627, 326438846760992348696038, 18147404450341079958539275
Offset: 8

Views

Author

Alois P. Heinz, Aug 26 2012

Keywords

Examples

			a(9) = 36: each graph has one 2-node tree and 7 1-node trees and C(9,2) = 36.
		

Crossrefs

Column k=8 of A215861.
The unlabeled version is A215988.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
          `if`(n=0, 1, add(binomial(n-1, i)*T(n-1-i, k-1)*
          `if`(i<2, 1, i!/2 +(i+1)^(i-1)), i=0..n-k)))
        end:
    a:= n-> T(n, 8):
    seq(a(n), n=8..25);

A215859 Number of simple labeled graphs on n nodes with exactly 9 connected components that are trees or cycles.

Original entry on oeis.org

1, 45, 1650, 54945, 1795794, 59546487, 2043490735, 73415619420, 2779264615127, 111226656560877, 4710924208619304, 211105699482022215, 9997623229700175712, 499562336689773070263, 26288415481415803589236, 1454007169289989503463230, 84361156450441837460650255
Offset: 9

Views

Author

Alois P. Heinz, Aug 26 2012

Keywords

Examples

			a(10) = 45: each graph has one 2-node tree and 8 1-node trees and C(10,2) = 45.
		

Crossrefs

Column k=9 of A215861.
The unlabeled version is A215989.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
          `if`(n=0, 1, add(binomial(n-1, i)*T(n-1-i, k-1)*
          `if`(i<2, 1, i!/2 +(i+1)^(i-1)), i=0..n-k)))
        end:
    a:= n-> T(n, 9):
    seq(a(n), n=9..25);

A215860 Number of simple labeled graphs on n nodes with exactly 10 connected components that are trees or cycles.

Original entry on oeis.org

1, 55, 2365, 90805, 3367364, 124984860, 4743643190, 186488038880, 7653850266777, 329429479792985, 14903545528332565, 709243144460040645, 35495878932860944422, 1866637759375098988740, 103014318586612720480259, 5957391569989223921495400
Offset: 10

Views

Author

Alois P. Heinz, Aug 26 2012

Keywords

Examples

			a(11) = 55: each graph has one 2-node tree and 9 1-node trees and C(11,2) = 55.
		

Crossrefs

Column k=10 of A215861.
The unlabeled version is A215980.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
          `if`(n=0, 1, add(binomial(n-1, i)*T(n-1-i, k-1)*
          `if`(i<2, 1, i!/2 +(i+1)^(i-1)), i=0..n-k)))
        end:
    a:= n-> T(n, 10):
    seq(a(n), n=10..30);

A215863 Number of simple labeled graphs on n+3 nodes with exactly n connected components that are trees or cycles.

Original entry on oeis.org

0, 19, 135, 540, 1610, 3990, 8694, 17220, 31680, 54945, 90805, 144144, 221130, 329420, 478380, 679320, 945744, 1293615, 1741635, 2311540, 3028410, 3920994, 5022050, 6368700, 8002800, 9971325, 12326769, 15127560, 18438490, 22331160, 26884440, 32184944, 38327520
Offset: 0

Views

Author

Alois P. Heinz, Aug 25 2012

Keywords

Examples

			a(1) = 19:
.1-2.  .1-2.  .1 2.  .1-2.  .1-2.  .1 2.  .1 2.  .1 2.  .1-2.  .1-2.
.| |.  . X .  .|X|.  .|\ .  . /|.  . \|.  .|/ .  .| |.  .|  .  .| |.
.4-3.  .4-3.  .4.3.  .4.3.  .4.3.  .4-3.  .4-3.  .4-3.  .4-3.  .4.3.
.
.1-2.  .1 2.  .1-2.  .1-2.  .1-2.  .1 2.  .1 2.  .1 2.  .1 2.
.  |.  . X .  . / .  . \ .  . X .  .|/|.  . X|.  .|X .  .|\|.
.4-3.  .4-3.  .4-3.  .4-3.  .4.3.  .4.3.  .4.3.  .4.3.  .4.3.
		

Crossrefs

A diagonal of A215861.

Programs

  • Maple
    a:= n-> binomial(n+3,4)*(24+(13+n)*n)/2:
    seq(a(n), n=0..40);

Formula

G.f.: (6*x^2-2*x-19)*x/(x-1)^7.
a(n) = C(n+3,4)*(n^2+13*n+24)/2.

A215864 Number of simple labeled graphs on n+4 nodes with exactly n connected components that are trees or cycles.

Original entry on oeis.org

0, 137, 1267, 6412, 23597, 70707, 183099, 424809, 904299, 1795794, 3367364, 6017011, 10318126, 17075786, 27395466, 42765846, 65157498, 97139343, 142014873, 203980238, 288306403, 401547685, 551779085, 748864935, 1004761485, 1333856160, 1753346322, 2283660477
Offset: 0

Views

Author

Alois P. Heinz, Aug 25 2012

Keywords

Crossrefs

A diagonal of A215861.

Programs

  • Maple
    a:= n-> binomial(n+4,5)*(3886+(2285+(390+15*n)*n)*n)/48:
    seq(a(n), n=0..40);
  • Mathematica
    CoefficientList[Series[(7x^3+59x^2-34x-137)x/(x-1)^9,{x,0,30}],x] (* Harvey P. Dale, Jul 18 2019 *)

Formula

G.f.: (7*x^3+59*x^2-34*x-137)*x/(x-1)^9.
a(n) = C(n+4,5)*(15*n^3+390*n^2+2285*n+3886)/48.

A215865 Number of simple labeled graphs on n+5 nodes with exactly n connected components that are trees or cycles.

Original entry on oeis.org

0, 1356, 15029, 90734, 394506, 1381695, 4138827, 11002068, 26603148, 59546487, 124984860, 248436188, 471271892, 858408642, 1508851218, 2569865520, 4255708464, 6872006526, 10847057991, 16771536474, 25448295950, 37954221305, 55716334245, 80604653220
Offset: 0

Views

Author

Alois P. Heinz, Aug 25 2012

Keywords

Crossrefs

A diagonal of A215861.

Programs

  • Maple
    a:= n-> binomial(n+5,6)*(12992+(7006+(1565+(130+3*n)*n)*n)*n)/16:
    seq(a(n), n=0..40);

Formula

G.f.: (194*x^4-713*x^3-5*x^2+113*x+1356)*x/(1-x)^11.
a(n) = C(n+5,6)*(3*n^4+130*n^3+1565*n^2+7006*n+12992)/16.

A309313 Number of simple labeled graphs on 2n nodes with exactly n connected components that are trees or cycles.

Original entry on oeis.org

1, 1, 19, 540, 23597, 1381695, 101682724, 9016296289, 935625630797, 111226656560877, 14903545528332565, 2222230881719482634, 364942065096639623872, 65448490334085989020670, 12726830901257817750060165, 2667188536603107740647377075, 599286881811684624273478547325
Offset: 0

Views

Author

Alois P. Heinz, Jul 22 2019

Keywords

Comments

(a(n)/n!)^(1/n) tends to 15.1198... - Vaclav Kotesovec, Aug 06 2019

Crossrefs

Cf. A215861.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
          `if`(n=0, 1, add(binomial(n-1, i)*b(n-1-i, k-1)*
          `if`(i<2, 1, i!/2 +(i+1)^(i-1)), i=0..n-k)))
        end:
    a:= n-> b(2*n, n):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, k_] := b[n, k] = If[k < 0 || k > n, 0,
        If[n == 0, 1, Sum[Binomial[n - 1, i]*b[n - 1 - i, k - 1]*
        If[i<2, 1, i!/2 + (i+1)^(i-1)], {i, 0, n-k}]]];
    a[n_] := b[2n, n];
    a /@ Range[0, 20] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)

Formula

a(n) = A215861(2n,n).
Previous Showing 11-17 of 17 results.