cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A290810 Numbers k such that 6k-1, 12k-1 and 18k-1 are all primes.

Original entry on oeis.org

1, 4, 5, 14, 15, 29, 39, 40, 49, 70, 110, 159, 169, 204, 235, 260, 264, 315, 334, 355, 390, 425, 449, 490, 560, 565, 599, 634, 725, 729, 735, 820, 824, 889, 1019, 1029, 1349, 1379, 1419, 1510, 1580, 1590, 1694, 1719, 1765, 1925, 1930, 1950, 1985, 2044, 2150
Offset: 1

Views

Author

Amiram Eldar, Aug 11 2017

Keywords

Comments

If k is in the sequence then (6k-1)(12k-1)(18k-1) = 36k * (36k^2 - 11k + 1) - 1 is a Lucas-Carmichael number (A006972).
Analogous to A046025 as A006972 (Lucas-Carmichael numbers) is analogous to A002997 (Carmichael numbers).

Examples

			1 is in the sequence since 6*1 - 1 = 5, 12*1 - 1 = 11 and 18*1 - 1 = 17 are all primes, and 5*11*17 = 935 is a Lucas-Carmichael number.
		

Crossrefs

Programs

  • Mathematica
    seq = {}; Do[ If[ AllTrue[{6 m - 1, 12 m - 1, 18 m - 1}, PrimeQ ], AppendTo[seq, m] ], {m, 1, 10^5} ]; seq
  • PARI
    isok(n) = isprime(6*n-1) && isprime(12*n-1) && isprime(18*n-1); \\ Michel Marcus, Aug 11 2017

Formula

6*a(n) - 1 = A067256(n+1).

A292539 Primes p1 such that p2 = 2p1 + 1 and p3 = p1*p2 - 2 are also primes, so p1*p2*p3 is a Lucas-Carmichael number of the form k^2 - 1.

Original entry on oeis.org

3, 5, 11, 29, 53, 83, 173, 239, 281, 359, 431, 719, 761, 809, 911, 1031, 1103, 1223, 1289, 1451, 1481, 1511, 1559, 1931, 2069, 2339, 2351, 2393, 2693, 2699, 2819, 2969, 3359, 3491, 3539, 3851, 4019, 4211, 4409, 5039, 6113, 6269, 6329, 6491, 6521, 6551, 6581
Offset: 1

Views

Author

Amiram Eldar, Sep 18 2017

Keywords

Comments

All the primes, except the first, are of the form p1 = 6k - 1, p2 = 12k - 1, p3 = 72k^2 - 18k - 1, with k = 1, 2, 5, 9, 14, 29, 40, 47, 60, 72, 120, 127, 135, 152, 172, 184, ...
The generated Lucas-Carmichael numbers are 399, 2915, 63503, 2924099, 32148899, 192099599, 3603600899, 13105670399, 25027872803, ...
Subsequence of A005384 (Sophie Germain primes).

Examples

			p1 = 3 is in the sequence since with p2 = 2*3 + 1 = 7 and p3 = 3*7 - 2 = 19 they are all primes. 3*7*19 = 399 is a Lucas-Carmichael number.
		

Crossrefs

Programs

  • Mathematica
    aQ[n_] := AllTrue[{n, 2n+1, 2 n^2+n-2}, PrimeQ]; Select[Range[10^3], aQ]
    Select[Prime[Range[1000]],AllTrue[{2#+1,#(2#+1)-2},PrimeQ]&] (* Harvey P. Dale, Aug 16 2024 *)
  • PARI
    is(n) = if(!ispseudoprime(n), return(0), my(p=2*n+1); if(!ispseudoprime(p), return(0), if(ispseudoprime(n*p-2), return(1)))); 0 \\ Felix Fröhlich, Sep 18 2017

A300959 Number of prime factors of the n-th Lucas-Carmichael number.

Original entry on oeis.org

3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 4, 3, 4, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3, 4, 3, 4, 3, 3, 4, 4, 4, 3, 3, 4, 3, 4, 4, 3, 4, 3, 5, 4, 3, 3, 3, 3, 4, 3, 3, 4, 3, 4, 4, 3, 3, 3, 5, 4, 4, 3, 3, 4, 3, 4, 3, 3, 4, 4, 4, 3, 3, 4, 4, 3, 4, 4, 4, 4, 3, 5, 3, 4, 3
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Mar 17 2018

Keywords

Comments

The number of prime factors is always >= 3.

Crossrefs

Cf. A006972 (Lucas-Carmichael numbers).
Cf. A216925, A216926, A216927, A217002, A217003, A217091 (Lucas-Carmichael numbers with 3 to 8 prime factors).
Cf. A216928 (Least Lucas-Carmichael number with n prime factors).

Programs

  • PARI
    islc(n)=my(f=factor(n)); for(i=1, #f[, 1], if((n+1)%(f[i, 1]+1) || f[i, 2]>1, return(0))); #f[, 1]>1; \\ from A006972
    lista(nn) = for (n=1, nn, if (islc(n), print1(omega(n), ", "))); \\ Michel Marcus, Mar 17 2018

Formula

a(n) = A001221(A006972(n)).
Previous Showing 11-13 of 13 results.