cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A243888 Primes of the form 2*n^2+26*n+11.

Original entry on oeis.org

71, 107, 191, 239, 347, 1031, 1439, 1667, 1787, 2039, 2447, 2591, 3371, 3539, 5231, 5651, 5867, 6311, 7247, 9311, 9587, 10151, 11027, 11939, 12251, 14207, 14891, 19727, 20939, 21767, 23039, 27539, 30431, 34511, 36107, 39971, 41687, 46439, 47051, 56039, 56711
Offset: 1

Views

Author

Vincenzo Librandi, Jun 16 2014

Keywords

Comments

Subsequence of A068231.
Conjecture: except 107, 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 147 is a square. - Vincenzo Librandi, Apr 10 2015

Crossrefs

Cf. A068231.
Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A221902 (k=1), A154577 (k=2), A154592 (k=3), A154601 (k=4), this sequence (k=5), A243889 (k=6), A217494 (k=7), A243890 (k=8), A221903 (k=9), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A243891 (k=14), A243957 (k=15), A217499 (k=16), A217500 (k=17), A217501 (k=18), A217620 (k=19), A243958 (k=20), A217621 (k=21).

Programs

  • Magma
    [a: n in [1..200] | IsPrime(a) where a is 2*n^2+26*n+11];
  • Mathematica
    Select[Table[2 n^2 + 26 n + 11, {n, 800}], PrimeQ]

A221902 Primes of the form 2*n^2 + 10*n + 3.

Original entry on oeis.org

31, 103, 211, 751, 1291, 2371, 2803, 3271, 5503, 6151, 8311, 9103, 9931, 17851, 23971, 25303, 32503, 42331, 49603, 51511, 68071, 82003, 94603, 97231, 105331, 119551, 122503, 137803, 157351, 167611, 171103, 174631, 192811, 204151
Offset: 1

Views

Author

Vincenzo Librandi, Jan 31 2013

Keywords

Comments

Conjecture: After the first term, 2^a(n)-1 is not prime; in other words, these primes (except 31) are included in A054723.
2*a(n) + 19 is a square. - Vincenzo Librandi, Apr 10 2015

Crossrefs

Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), A217500 (k=17), A217501 (k=18), A217620 (k=19), A217621 (k=21).
Cf. A054723 (Prime exponents of nonprime Mersenne numbers).

Programs

  • Magma
    [a: n in [1..500] | IsPrime(a) where a is 2*n^2 + 10*n + 3];
  • Mathematica
    Select[Table[2 n^2 + 10 n + 3,{n, 500}],PrimeQ]

A221903 Primes of the form 2*n^2 + 42*n + 19.

Original entry on oeis.org

163, 811, 1423, 1783, 2179, 3079, 3583, 9739, 11503, 13411, 14419, 17659, 22483, 25111, 26479, 27883, 42139, 49411, 55243, 57259, 70111, 72379, 77023, 79399, 86743, 97039, 116443, 119359, 125299, 140779, 181603, 188911, 207811
Offset: 1

Views

Author

Vincenzo Librandi, Feb 01 2013

Keywords

Comments

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 403 is a square. - Vincenzo Librandi, Apr 10 2015

Crossrefs

Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), this sequence (k=9), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), A217500 (k=17), A217501 (k=18), A217620 (k=19), A217621 (k=21).
Cf. A054723.

Programs

  • Magma
    [a: n in [1..500] | IsPrime(a) where a is 2*n^2 + 42*n + 19];
  • Mathematica
    Select[Table[2 n^2 + 42 n + 19, {n, 500}], PrimeQ]
Previous Showing 11-13 of 13 results.