A218748
a(n) = (45^n - 1)/44.
Original entry on oeis.org
0, 1, 46, 2071, 93196, 4193821, 188721946, 8492487571, 382161940696, 17197287331321, 773877929909446, 34824506845925071, 1567102808066628196, 70519626362998268821, 3173383186334922096946, 142802243385071494362571, 6426100952328217246315696
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 46*Self(n-1) - 45*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 08 2012
-
LinearRecurrence[{46, -45}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)
-
A218748(n):=(45^n-1)/44$ makelist(A218748(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218748(n)=45^n\44
A218749
a(n) = (46^n - 1)/45.
Original entry on oeis.org
0, 1, 47, 2163, 99499, 4576955, 210539931, 9684836827, 445502494043, 20493114725979, 942683277395035, 43363430760171611, 1994717814967894107, 91757019488523128923, 4220822896472063930459, 194157853237714940801115, 8931261248934887276851291, 410838017451004814735159387
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 47*Self(n-1) - 46*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 08 2012
-
LinearRecurrence[{47, -46}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)
(46^Range[0,20]-1)/45 (* Harvey P. Dale, Aug 17 2017 *)
-
A218749(n):=(46^n-1)/45$ makelist(A218749(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218749(n)=46^n\45
A218751
a(n) = (48^n - 1)/47.
Original entry on oeis.org
0, 1, 49, 2353, 112945, 5421361, 260225329, 12490815793, 599559158065, 28778839587121, 1381384300181809, 66306446408726833, 3182709427618887985, 152770052525706623281, 7332962521233917917489, 351982201019228060039473, 16895145648922946881894705, 810966991148301450330945841
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 49*Self(n-1)-48*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 08 2012
-
LinearRecurrence[{49, -48}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)
-
A218751(n):=floor((48^n-1)/47)$ makelist(A218751(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
A218751(n)=48^n\47
A282137
Expansion of (24x^2-10x-1)/(16x^3-16x^2+x-1).
Original entry on oeis.org
1, 11, -29, -189, 451, 3011, -7229, -48189, 115651, 771011, -1850429, -12336189, 29606851, 197379011, -473709629, -3158064189, 7579354051, 50529027011, -121269664829, -808464432189, 1940314637251, 12935430915011, -31045034196029, -206966894640189
Offset: 0
-
LinearRecurrence[{0,0,0,257,0,0,0,-256}, {1, 11, -29, -189, 451, 3011, -7229, -48189}, 24]
LinearRecurrence[{1, -16, 16}, {1, 11, -29}, 24]
-
Vec((1 - 2*x)*(1 + 12*x) / ((1 - x)*(1 + 16*x^2)) + O(x^30)) \\ Colin Barker, Feb 07 2017
-
print([[1, 11, -29, -189][n%4] + [450, 3000, -7200, -48000][n%4]*(256**(n//4)-1)//255 for n in range(24)])
Comments