cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A218741 a(n) = (38^n - 1)/37.

Original entry on oeis.org

0, 1, 39, 1483, 56355, 2141491, 81376659, 3092313043, 117507895635, 4465300034131, 169681401296979, 6447893249285203, 245019943472837715, 9310757851967833171, 353808798374777660499, 13444734338241551098963, 510899904853178941760595, 19414196384420799786902611
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 38 (A009982).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-38*x)).
a(n) = 39*a(n-1) - 38*a(n-2).
a(n) = floor(38^n/37). (End)
E.g.f.: exp(x)*(exp(37*x) - 1)/37. - Elmo R. Oliveira, Aug 29 2024

A218742 a(n) = (39^n - 1)/38.

Original entry on oeis.org

0, 1, 40, 1561, 60880, 2374321, 92598520, 3611342281, 140842348960, 5492851609441, 214221212768200, 8354627297959801, 325830464620432240, 12707388120196857361, 495588136687677437080, 19327937330819420046121, 753789555901957381798720, 29397792680176337890150081
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 39 (A009983).

Crossrefs

Programs

Formula

a(n) = floor(39^n/38).
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-39*x)).
a(n) = 40*a(n-1) - 39*a(n-2). (End)
E.g.f.: exp(20*x)*sinh(19*x)/19. - Elmo R. Oliveira, Aug 29 2024

A218747 a(n) = (44^n - 1)/43.

Original entry on oeis.org

0, 1, 45, 1981, 87165, 3835261, 168751485, 7425065341, 326702875005, 14374926500221, 632496766009725, 27829857704427901, 1224513738994827645, 53878604515772416381, 2370658598693986320765, 104308978342535398113661, 4589595047071557517001085, 201942182071148530748047741
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 44 (A009988).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-44*x)).
a(n) = 45*a(n-1) - 44*a(n-2).
a(n) = floor(44^n/43). (End)
E.g.f.: exp(x)*(exp(43*x) - 1)/43. - Elmo R. Oliveira, Aug 29 2024

A218748 a(n) = (45^n - 1)/44.

Original entry on oeis.org

0, 1, 46, 2071, 93196, 4193821, 188721946, 8492487571, 382161940696, 17197287331321, 773877929909446, 34824506845925071, 1567102808066628196, 70519626362998268821, 3173383186334922096946, 142802243385071494362571, 6426100952328217246315696
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 45 (A009989).

Crossrefs

Programs

Formula

G.f.: x/((1-x)*(1-45*x)). - Vincenzo Librandi, Nov 08 2012
a(n) = 46*a(n-1) - 45*a(n-2) with a(0)=0, a(1)=1. - Vincenzo Librandi, Nov 08 2012
a(n) = 45*a(n-1) + 1 with a(0)=0. - Vincenzo Librandi, Nov 08 2012
a(n) = floor(45^n/44). - Vincenzo Librandi, Nov 08 2012
E.g.f.: exp(23*x)*sinh(22*x)/22. - Elmo R. Oliveira, Aug 27 2024

A218749 a(n) = (46^n - 1)/45.

Original entry on oeis.org

0, 1, 47, 2163, 99499, 4576955, 210539931, 9684836827, 445502494043, 20493114725979, 942683277395035, 43363430760171611, 1994717814967894107, 91757019488523128923, 4220822896472063930459, 194157853237714940801115, 8931261248934887276851291, 410838017451004814735159387
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 46 (A009990).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 08 2012: (Start)
G.f.: x/((1-x)*(1-46*x)).
a(n) = 47*a(n-1) - 46*a(n-2) with a(0)=0, a(1)=1.
a(n) = 46*a(n-1) + 1 with a(0)=0.
a(n) = floor(46^n/45). (End)
E.g.f.: exp(x)*(exp(45*x) - 1)/45. - Elmo R. Oliveira, Aug 29 2024

A218751 a(n) = (48^n - 1)/47.

Original entry on oeis.org

0, 1, 49, 2353, 112945, 5421361, 260225329, 12490815793, 599559158065, 28778839587121, 1381384300181809, 66306446408726833, 3182709427618887985, 152770052525706623281, 7332962521233917917489, 351982201019228060039473, 16895145648922946881894705, 810966991148301450330945841
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 48 (A009992).

Crossrefs

Programs

Formula

a(n) = floor(48^n/47).
From Vincenzo Librandi, Nov 08 2012: (Start)
G.f.: x/((1-x)*(1-48*x)).
a(n) = 49*a(n-1) - 48*a(n-2) with a(0)=0, a(1)=1.
a(n) = 48*a(n-1) + 1 with a(0)=0. (End)
E.g.f.: exp(x)*(exp(47*x) - 1)/47. - Elmo R. Oliveira, Aug 29 2024
Previous Showing 31-36 of 36 results.