A219200 Number of partitions of n into 6 distinct primes.
1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 4, 0, 2, 1, 5, 1, 6, 0, 5, 2, 6, 1, 10, 1, 9, 4, 11, 3, 15, 3, 14, 6, 16, 6, 22, 5, 20, 10, 25, 11, 29, 9, 29, 16, 34, 17, 39, 15, 39, 25, 45, 24, 50, 25, 53, 35, 57, 34, 66, 36, 68, 48, 75, 50, 83, 52, 88, 65, 92, 69, 104
Offset: 41
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 41..10000
Crossrefs
Column k=6 of A219180.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1,0$6], `if`(i<1, [0$7], zip((x, y)->x+y, b(n, i-1), [0, `if`(ithprime(i)>n, [0$6], b(n-ithprime(i), i-1)[1..6])[]], 0))) end: a:= n-> b(n, numtheory[pi](n))[7]: seq(a(n), n=41..120); -
Mathematica
k = 6; b[n_, i_] := b[n, i] = If[n == 0, Join[{1}, Array[0&, k]], If[i<1, Array[0&, k+1], Plus @@ PadRight[{b[n, i-1], Join[{0}, If[Prime[i]>n, Array[0&, k], Take[b[n-Prime[i], i-1], k]]]}]]]; a[n_] := b[n, PrimePi[n]][[k+1]]; Table[a[n], {n, 41, 120}] (* Jean-François Alcover, Jan 30 2014, after Alois P. Heinz *) Table[Count[IntegerPartitions[n,{6}],?(AllTrue[#,PrimeQ]&&Length[Union[#]]==6&)],{n,41,120}] (* _Harvey P. Dale, Sep 17 2023 *)
Formula
G.f.: Sum_{0
a(n) = [x^n*y^6] Product_{i>=1} (1+x^prime(i)*y).
A219201 Number of partitions of n into 7 distinct primes.
1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 4, 0, 3, 0, 3, 1, 6, 0, 6, 1, 5, 1, 10, 0, 11, 2, 9, 3, 16, 1, 17, 3, 15, 5, 25, 4, 24, 5, 25, 10, 35, 6, 34, 10, 36, 15, 48, 10, 50, 17, 52, 23, 65, 17, 69, 27, 70, 32, 89, 30, 93, 38, 93, 48, 116, 43, 121, 56, 125, 70, 148
Offset: 58
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 58..10000
Crossrefs
Column k=7 of A219180.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1,0$7], `if`(i<1, [0$8], zip((x, y)->x+y, b(n, i-1), [0, `if`(ithprime(i)>n, [0$7], b(n-ithprime(i), i-1)[1..7])[]], 0))) end: a:= n-> b(n, numtheory[pi](n))[8]: seq(a(n), n=58..140); -
Mathematica
k = 7; b[n_, i_] := b[n, i] = If[n == 0, Join[{1}, Array[0&, k]], If[i<1, Array[0&, k+1], Plus @@ PadRight[{b[n, i-1], Join[{0}, If[Prime[i]>n, Array[0&, k], Take[b[n-Prime[i], i-1], k]]]}]]]; a[n_] := b[n, PrimePi[n]][[k+1]]; Table[a[n], {n, 58, 140}] (* Jean-François Alcover, Jan 30 2014, after Alois P. Heinz *) Table[Length@Select[IntegerPartitions[k,{7}, Prime@Range@100], #[[1]] > #[[2]] > #[[3]] > #[[4]] > #[[5]] > #[[6]] > #[[7]] &], {k, 58, 140}] (* Robert Price, Apr 25 2025 *)
Formula
G.f.: Sum_{0
a(n) = [x^n*y^7] Product_{i>=1} (1+x^prime(i)*y).
A219202 Number of partitions of n into 8 distinct primes.
1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 3, 0, 1, 0, 3, 0, 5, 0, 4, 1, 5, 0, 10, 0, 6, 1, 10, 1, 15, 1, 10, 2, 17, 2, 23, 1, 17, 5, 27, 4, 32, 2, 30, 9, 38, 7, 48, 6, 43, 13, 56, 10, 70, 12, 62, 20, 78, 19, 98, 20, 86, 31, 109, 30, 128, 28, 121, 49, 145, 45, 170
Offset: 77
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 77..10000
Crossrefs
Column k=8 of A219180.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1,0$8], `if`(i<1, [0$9], zip((x, y)->x+y, b(n, i-1), [0, `if`(ithprime(i)>n, [0$8], b(n-ithprime(i), i-1)[1..8])[]], 0))) end: a:= n-> b(n, numtheory[pi](n))[9]: seq(a(n), n=77..150); -
Mathematica
k = 8; b[n_, i_] := b[n, i] = If[n == 0, Join[{1}, Array[0&, k]], If[i<1, Array[0&, k+1] , Plus @@ PadRight[{b[n, i-1], Join[{0}, If[Prime[i]>n, Array[0&, k], Take[b[n-Prime[i], i-1], k]]]}]]]; a[n_] := b[n, PrimePi[n]][[k+1]]; Table[a[n], {n, 77, 150}] (* Jean-François Alcover, Jan 30 2014, after Alois P. Heinz *) Table[Length@Select[IntegerPartitions[k,{8}, Prime@Range@100], #[[1]] > #[[2]] > #[[3]] > #[[4]] > #[[5]] > #[[6]] > #[[7]] > #[[8]] &], {k, 77, 150}] (* Robert Price, Apr 25 2025 *)
Formula
G.f.: Sum_{0
a(n) = [x^n*y^8] Product_{i>=1} (1+x^prime(i)*y).
A219203 Number of partitions of n into 9 distinct primes.
1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 5, 0, 4, 0, 2, 0, 9, 0, 7, 1, 6, 1, 13, 0, 10, 0, 12, 2, 20, 0, 19, 2, 20, 3, 31, 1, 30, 4, 28, 5, 49, 3, 45, 7, 43, 9, 69, 7, 63, 10, 66, 16, 97, 9, 91, 18, 96, 25, 130, 16, 131, 30, 134, 35, 177, 25, 182
Offset: 100
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 100..10000
Crossrefs
Column k=9 of A219180.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1,0$9], `if`(i<1, [0$10], zip((x, y)->x+y, b(n, i-1), [0, `if`(ithprime(i)>n, [0$9], b(n-ithprime(i), i-1)[1..9])[]], 0))) end: a:= n-> b(n, numtheory[pi](n))[10]: seq(a(n), n=100..180); -
Mathematica
k = 9; b[n_, i_] := b[n, i] = If[n == 0, Join[{1}, Array[0&, k]], If[i<1, Array[0&, k+1] , Plus @@ PadRight[{b[n, i-1], Join[{0}, If[Prime[i]>n, Array[0&, k], Take[b[n-Prime[i], i-1], k]]]}]]]; a[n_] := b[n, PrimePi[n]][[k+1]]; Table[a[n], {n, 100, 180}] (* Jean-François Alcover, Jan 30 2014, after Alois P. Heinz *) Table[Length[Select[IntegerPartitions[n,{9}],AllTrue[#,PrimeQ]&&Length[Union[#]] == 9&]],{n,100,180}] (* Harvey P. Dale, Mar 09 2023 *)
Formula
G.f.: Sum_{0
a(n) = [x^n*y^9] Product_{i>=1} (1+x^prime(i)*y).
A219204 Number of partitions of n into 10 distinct primes.
1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 3, 0, 1, 0, 4, 0, 5, 0, 3, 0, 7, 0, 9, 0, 7, 1, 10, 0, 16, 0, 9, 1, 18, 1, 25, 1, 16, 2, 30, 2, 35, 1, 25, 4, 45, 3, 53, 2, 45, 8, 62, 4, 79, 6, 67, 14, 90, 8, 112, 10, 96, 19, 126, 16, 158, 17, 135, 29, 182, 26, 210
Offset: 129
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 129..10000
Crossrefs
Column k=10 of A219180.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1,0$10], `if`(i<1, [0$11], zip((x, y)->x+y, b(n, i-1), [0, `if`(ithprime(i)>n, [0$10], b(n-ithprime(i), i-1)[1..10])[]], 0))) end: a:= n-> b(n, numtheory[pi](n))[11]: seq(a(n), n=129..210); -
Mathematica
k = 10; b[n_, i_] := b[n, i] = If[n == 0, Join[{1}, Array[0&, k]], If[i<1, Array[0&, k+1] , Plus @@ PadRight[{b[n, i-1], Join[{0}, If[Prime[i]>n, Array[0&, k], Take[b[n-Prime[i], i-1], k]]]}]]]; a[n_] := b[n, PrimePi[n]][[k+1]]; Table[a[n], {n, 129, 210}] (* Jean-François Alcover, Jan 30 2014, after Alois P. Heinz *) Table[Length@Select[IntegerPartitions[k,{10}, Prime@Range@100], #[[1]] > #[[2]] > #[[3]] > #[[4]] > #[[5]] > #[[6]] > #[[7]] > #[[8]] > #[[9]] > #[[10]] &], {k, 129, 210}] (* Robert Price, Apr 25 2025 *)
Formula
G.f.: Sum_{0
a(n) = [x^n*y^10] Product_{i>=1} (1+x^prime(i)*y).
A299168 Number of ordered ways of writing n-th prime number as a sum of n primes.
1, 0, 0, 0, 5, 6, 42, 64, 387, 5480, 10461, 113256, 507390, 1071084, 4882635, 44984560, 382362589, 891350154, 7469477771, 33066211100, 78673599501, 649785780710, 2884039365010, 22986956007816, 306912836483025, 1361558306986280, 3519406658042964
Offset: 1
Keywords
Examples
a(5) = 5 because fifth prime number is 11 and we have [3, 2, 2, 2, 2], [2, 3, 2, 2, 2], [2, 2, 3, 2, 2], [2, 2, 2, 3, 2] and [2, 2, 2, 2, 3].
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..400
Crossrefs
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add( `if`(isprime(j), b(n-j, t-1), 0), j=1..n))) end: a:= n-> b(ithprime(n), n): seq(a(n), n=1..30); # Alois P. Heinz, Feb 13 2021 -
Mathematica
Table[SeriesCoefficient[Sum[x^Prime[k], {k, 1, n}]^n, {x, 0, Prime[n]}], {n, 1, 27}]
Formula
a(n) = [x^prime(n)] (Sum_{k>=1} x^prime(k))^n.
A347550 Number of partitions of n into at most 2 distinct prime parts.
1, 0, 1, 1, 0, 2, 0, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 3, 1, 2, 0, 2, 1, 3, 2, 2, 1, 3, 0, 4, 1, 1, 1, 3, 1, 4, 2, 3, 1, 3, 1, 5, 1, 4, 0, 3, 1, 5, 1, 3, 0, 3, 1, 6, 2, 2, 1, 5, 0, 6, 1, 2, 1, 5, 1, 6, 2, 4, 1, 5, 0, 7, 1, 4, 1, 4, 1, 8, 1, 4
Offset: 0
Keywords
Formula
a(n) = Sum_{k=0..2} A219180(n,k). - Alois P. Heinz, Sep 08 2021
A358010 Number of partitions of n into at most 5 distinct prime parts.
1, 0, 1, 1, 0, 2, 0, 2, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 4, 3, 4, 4, 4, 5, 5, 5, 6, 5, 6, 7, 6, 9, 7, 9, 9, 9, 11, 11, 11, 13, 12, 13, 15, 15, 17, 15, 18, 17, 20, 20, 23, 20, 25, 22, 27, 28, 28, 27, 30, 29, 36, 34, 38, 36, 41, 35, 48, 41, 48, 44, 50, 46, 58, 53, 61, 54, 64, 55, 72, 66, 74
Offset: 0
Keywords
A358011 Number of partitions of n into at most 6 distinct prime parts.
1, 0, 1, 1, 0, 2, 0, 2, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 4, 3, 4, 4, 4, 5, 5, 5, 6, 5, 6, 7, 6, 9, 7, 9, 9, 9, 11, 11, 11, 13, 12, 14, 15, 15, 17, 16, 18, 19, 20, 21, 23, 22, 25, 26, 27, 30, 29, 32, 31, 35, 36, 39, 40, 42, 42, 45, 49, 50, 52, 55, 53, 61, 61, 67, 67, 70, 70, 77, 77, 86, 84
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 501 terms from Robert Israel)
Crossrefs
Programs
-
Maple
P:= select(isprime,[2,seq(i,i=3..100,2)]): G:= mul(1+t*x^p, p=P): f:= proc(n) local i,S; S:= coeff(G,x,n); add(coeff(S,t,i),i=0..6) end proc; map(f, [$0..100]); # Robert Israel, May 14 2025
Formula
a(n) = Sum_{k=0..6} A219180(n,k). - Alois P. Heinz, May 14 2025
A219181 Number of partitions of n into the maximal possible number of distinct prime parts or 0 if there are no such partitions.
1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 1, 3, 1, 3, 2, 4, 2, 4, 2, 5, 2, 1, 4, 1, 4, 1, 4, 1, 6, 2, 6, 1, 6, 2, 8, 4, 10, 2, 1, 5, 1, 6, 1, 5, 2, 6, 2, 10, 1, 9, 1, 11, 4, 15, 3, 14, 3, 1, 6, 1, 6, 1, 5, 1, 10, 1, 11
Offset: 0
Examples
a(18) = 2 because there are 2 partitions of 18 into 3 distinct prime parts ([2,3,13], [2,5,11]) but no partitions of 18 into more than 3 distinct prime parts.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3500
Programs
-
Maple
with(numtheory): b:= proc(n, i) option remember; `if`(n=0, [1], `if`(i<1, [], zip((x, y)->x+y, b(n, i-1), [0, `if`(ithprime(i)>n, [], b(n-ithprime(i), i-1))[]], 0))) end: a:= proc(n) local l; l:=b(n,pi(n)); while nops(l)>0 and l[-1]=0 do l:= subsop(-1=NULL, l) od; `if`(nops(l)=0, 0, l[-1]) end: seq(a(n), n=0..100); -
Mathematica
zip = With[{m = Max[Length[#1], Length[#2]]}, PadRight[#1, m] + PadRight[#2, m]]&; b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i<1, {}, zip[b[n, i-1], Join[{0}, If[Prime[i]>n, {}, b[n-Prime[i], i-1]]]]]]; a[n_] := (l = b[n, PrimePi[n]]; While[Length[l]>0 && l[[-1]] == 0, l = ReplacePart[l, -1 -> Nothing]]; If[Length[l] == 0, 0, l[[-1]]]); Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 12 2017, translated from Maple *)
Comments