cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A303261 Numbers having n digits in base n+1, and equal to the determinant of a circulant matrix based on these digits.

Original entry on oeis.org

1, 28, 35, 1936, 2761, 3421, 3732, 4043, 4354, 281048, 289820, 333293, 420239, 428752, 430686, 437554, 500380, 500888, 736600, 941578, 984377, 1027176, 1069975, 1112774, 1155573, 1662216, 1776201, 2087008, 5331625, 6825024, 7014400
Offset: 1

Views

Author

M. F. Hasler, Apr 25 2018

Keywords

Comments

A subsequence of A303262, namely, the terms in row n which correspond to n-digit numbers in base n+1.

Crossrefs

Programs

  • PARI
    for(n=1, 10, for(k=(n+1)^(n-1), (n+1)^n-1, d=Vec(digits(k, n+1)); abs(matdet(matrix(n, n, i, j, d[(j-i)%n+1])))==k&&print1(k", ")))

A303262 Table where row n lists numbers N equal to the determinant of an n X n circulant having as a row the base n+1 digits of N.

Original entry on oeis.org

1, 1, 1, 8, 9, 28, 35, 1, 65, 80, 91, 1, 44, 99, 550, 854, 1936, 2761, 3421, 3732, 4043, 4354, 1, 63, 65, 2527, 3311, 3969, 4095, 13545, 13889, 1, 128, 129, 145, 6066, 16384, 16385, 16512, 16513, 16641, 18560, 18577, 18669, 18705, 90738, 103759, 103965, 109220, 120142, 121920
Offset: 1

Views

Author

M. F. Hasler, Apr 23 2018

Keywords

Examples

			The table starts
(n=1) 1,
(n=2) 1,
(n=3) 1, 8, 9, 28, 35,
(n=4) 1, 65, 80, 91,
(n=5) 1, 44, 99, 550, 854, 1936, 2761, 3421, 3732, 4043, 4354,
(n=6) 1, 63, 65, 2527, 3311, 3969, 4095, 13545, 13889,
(n=7) 1, 128, 129, 145, 6066, 16384, 16385, 16512, 16513, 16641, 18560, 18577, 18669, 18705, 90738, 103759, 103965, ...
For example, T(3,1) = 1 because the determinant of the circulant starting with [0, 0, 1] is 1. For the same reason each row starts with 1.
T(3,2) = 8 = 020[4] (digits in base 4) = det(circulant([0, 2, 0])).
T(3,5) = 35 = 203[4] = det(circulant([2, 0, 3])).
		

Crossrefs

Programs

  • PARI
    for(n=1,7,for(k=1,(n+1)^n-1,d=Vec(digits(k,n+1),-n);abs(matdet(matrix(n,n,i,j,d[(j-i)%n+1])))==k&&print1(k",")))

A330519 Circulant determinant chain starting at 1007749.

Original entry on oeis.org

1007749, 18791108, -186878195, -1050017609, -9619142907, -4098030816, -59235488169, -43035664380, -25214990766, -189627605493, 779029018560, 14532890711040, 364989611366055, 1929185790836472, -1121729573175075, 13492031465869425, 329600773788765624
Offset: 1

Views

Author

Jeff Heleen, Dec 17 2019

Keywords

Comments

Form a circulant matrix from a given number. Find the determinant. Use that determinant to form the next circulant matrix. Repeat. If a determinant is negative, multiply each element of the next matrix by -1. 1007749 is the smallest number whose chain appears to increase without bound. (It would be nice to have a proof that this chain is unbounded!)
If we had started at 247, the next term in the chain, and all subsequent terms, would be 247, since (see A219324)
..........| 2 4 7 |
247 = det | 7 2 4 |. - N. J. A. Sloane, Dec 18 2019
..........| 4 7 2 |

Crossrefs

Cf. A219324.

A323548 Amicable numbers under the calculation of the determinant of the circulant matrix formed by their decimal digits.

Original entry on oeis.org

108, 182, 473, 513, 1139005, 3798233, 142250866, 186519853, 245578912, 387304234, 12410397495, 15303786345, 28309184956, 28670744905
Offset: 1

Views

Author

Paolo P. Lava, Jan 18 2019

Keywords

Comments

Terms of A219324 are not in the list because they are perfect under the same rule.
The pairs in the listed terms are {108, 513}, {182, 473}, {1139005, 3798233}, {142250866, 387304234}, {186519853, 245578912}, {12410397495, 15303786345}, {28309184956, 28670744905}.
From David A. Corneth, Jan 21 2019: (Start)
For all 3-digit numbers k, the corresponding matrices of permutations of digits (unless perhaps leading 0) have the same determinant. In general, the number of determinants is much less than the number of permutations of digits.
Can permutations be "classified" to narrow the search space when finding terms?
Are there any terms with an even number of digits? (End)

Examples

			          | 1 0 8 |               | 5 1 3 |
      det | 8 1 0 | = 513 and det | 3 5 1 | = 108.
          | 0 8 1 |               | 1 3 5 |
.
          | 1 8 2 |               | 4 7 3 |
      det | 2 1 8 | = 473 and det | 3 4 7 | = 182.
          | 8 2 1 |               | 7 3 4 |
		

Crossrefs

Programs

  • Maple
    with(linalg): P:=proc(q) local a,b,c,d,j,k,n,p,t,x,y:
    for n from 1 to q do x:=n: for p from 1 to 2 do
    d:=ilog10(x)+1: a:=convert(x,base,10): c:=[]:
    for k from 1 to nops(a) do c:=[op(c),a[-k]]: od: t:=[op([]),c]:
    for k from 2 to d do b:=[op([]),c[nops(c)]]:
    for j from 1 to nops(c)-1 do b:=[op(b),c[j]]: od:
    c:=b: t:=[op(t),c]: od; x:=det(t): if x=0 then break:
    else if p=1 then y:=x: fi: fi: od:
    if n=x and y<>x then print(n); fi: od: end: P(10^8):
  • PARI
    is(n) = my(c = amidet(n)); if(c == n, return(0)); amidet(c) == n
    amidet(n) = my(d = digits(n), qd = #d, m = matrix(qd, qd)); for(i = 1, qd, for(j = 1, qd, m[i, j] = d[1 + (j - i)%qd])); ami = matdet(m); ami \\ David A. Corneth, Jan 21 2019

Extensions

a(7)-a(14) from Giovanni Resta, Jan 21 2019

A348428 Positive integers m that are equal to the determinant of the left circulant matrix formed by the decimal digits of m.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1547, 26027, 26933, 45018, 69781, 80487, 154791, 23203827, 257059332, 278945612, 456790123, 469135802, 493827160, 494376160, 506172839, 530864197, 543209876, 897163795, 1662971175, 2293668391, 3880266075, 6473710191
Offset: 1

Views

Author

Chai Wah Wu, Oct 18 2021

Keywords

Comments

A left circulant matrix is also called a anti-circulant or (-1)-circulant matrix.
Subsequence of A219327.
Fixed points of A177894. - John Keith, Oct 24 2021

Examples

			           ⎡1  5  4  7⎤
1547 = det ⎢5  4  7  1⎥
           ⎢4  7  1  5⎥
           ⎣7  1  5  4⎦.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], Equal[Det[NestList[RotateLeft, #2, #3 - 1]], #1] & @@ {#1, #2, Length[#2]} & @@ {#, IntegerDigits[#]} &] (* Michael De Vlieger, Oct 18 2021 *)
  • PARI
    isok(m) = {my(d=digits(m), x); matdet(matrix(#d, #d, i, j, if (i==1, d[j], x = lift(Mod(j+i-1, #d)); if (!x, x += #d); d[x]))) == m;} \\ Michel Marcus, Oct 19 2021
  • Python
    from sympy import Matrix
    A348428_list = []
    for n in range(1,10**6):
        s = [int(d) for d in str(n)]
        m = len(s)
        if n == Matrix(m, m, lambda i, j: s[(i+j) % m]).det():
            A348428_list.append(n)
    
Previous Showing 11-15 of 15 results.