A223520
Triangle T(n,k) represents the coefficients of (x^18*d/dx)^n, where n=1,2,3,....
Original entry on oeis.org
1, 18, 1, 630, 54, 1, 32760, 3492, 108, 1, 2260440, 277200, 11160, 180, 1, 194397840, 26376840, 1259280, 27180, 270, 1, 20022977520, 2937589200, 158601240, 4140360, 56070, 378, 1, 2402757302400, 375471270720, 22286940480, 667865520, 11093040, 103320, 504, 1
Offset: 1
1;
18,1;
630,54,1;
32760,3492,108,1;
2260440,277200,11160,180,1;
194397840,26376840,1259280,27180,270,1;
20022977520,2937589200,158601240,4140360,56070,378,1;
2402757302400,375471270720,22286940480,667865520,11093040,103320,504,1
Cf.
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522,
A223168-
A223172,
A223523-
A223532.
A223521
Triangle T(n,k) represents the coefficients of (x^19*d/dx)^n, where n=1,2,3,...
Original entry on oeis.org
1, 19, 1, 703, 57, 1, 38665, 3895, 114, 1, 2822545, 326895, 12445, 190, 1, 256851595, 32896885, 1484280, 30305, 285, 1, 27996823855, 3875508945, 197651965, 4878440, 62510, 399, 1, 3555596629585, 524061968815, 29372612430, 831849165, 13067250, 115178, 532, 1
Offset: 1
1;
19,1;
703,57,1;
38665,3895,114,1;
2822545,326895,12445,190,1;
256851595,32896885,1484280,30305,285,1;
27996823855,3875508945,197651965,4878440,62510,399,1;
3555596629585,524061968815,29372612430,831849165,13067250,115178,532,1;
Cf.
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522,
A223168-
A223172,
A223523-
A223532.
A223524
Triangle S(n, k) by rows: coefficients of 2^(n/2)*(x^(1/2)*d/dx)^n, where n =0, 2, 4, 6, ...
Original entry on oeis.org
1, 1, 2, 3, 12, 4, 15, 90, 60, 8, 105, 840, 840, 224, 16, 945, 9450, 12600, 5040, 720, 32, 10395, 124740, 207900, 110880, 23760, 2112, 64, 135135, 1891890, 3783780, 2522520, 720720, 96096, 5824, 128, 2027025, 32432400
Offset: 1
Triangle begins:
1;
1, 2;
3, 12, 4;
15, 90, 60, 8;
105, 840, 840, 224, 16;
945, 9450, 12600, 5040, 720, 32;
10395, 124740, 207900, 110880, 23760, 2112, 64;
...
Expansion takes the form:
2^1 (x^(1/2)*d/dx)^2 = 1*d/dx + 2*x*d^2/dx^2.
2^2 (x^(1/2)*d/dx)^4 = 3*d^2/dx^2 + 12*x*d^3/dx^3 + 4*x^2*d^4/dx^4.
Rows includes even rows of
A223168.
-
a[0]:= f(x):
for i from 1 to 20 do
a[i]:= simplify(2^((i+1)mod 2)*x^(1/2)*(diff(a[i-1],x$1)));
end do:
for j from 1 to 10 do
b[j]:=a[2j];
end do;
-
Flatten[Abs[Table[CoefficientList[2^n n! LaguerreL[n, -1/2, x], x], {n, 0, 7}]]] (* Ali Pourzand, Mar 28 2025 *)
A223525
Triangle S(n,k) by rows: coefficients of 3^((n-1)/2)*(x^(1/3)*d/dx)^n when n=1,3,5,...
Original entry on oeis.org
1, 4, 3, 4, 24, 9, 28, 252, 189, 27, 280, 3360, 3780, 1080, 81, 3640, 54600, 81900, 35100, 5265, 243, 1106560, 4979520, 5335200, 2134080, 369360, 27702, 729, 24344320, 127807680, 164324160, 82162080, 18960480, 2133054, 112266, 2187, 608608000
Offset: 1
Triangle begins:
1;
4, 3;
4, 24, 9;,
28, 252, 189, 27;
280, 3360, 3780, 1080, 81;
3640, 54600, 81900, 35100, 5265, 243;
1106560, 4979520, 5335200, 2134080, 369360, 27702, 729;
24344320, 127807680, 164324160, 82162080, 18960480, 2133054, 112266, 2187;
A223526
Triangle S(n,k) by rows: coefficients of 3^(n/2)*(x^(2/3)*d/dx)^n when n=0,2,4,6,...
Original entry on oeis.org
1, 1, 3, 4, 24, 9, 28, 252, 189, 27, 280, 3360, 3780, 1080, 81, 3640, 54600, 81900, 35100, 5265, 243, 58240, 1048320, 1965600, 1123200, 252720, 23328, 729, 1106560, 23237760, 52284960, 37346400, 11203920, 1551312, 96957, 2187, 24344320, 584263680, 1533692160
Offset: 1
Triangle begins:
1;
1, 3;
4, 24, 9;
28, 252, 189, 27;
280, 3360, 3780, 1080, 81;
3640, 54600, 81900, 35100, 5265, 243;
58240, 1048320, 1965600, 1123200, 252720, 23328, 729;
1106560, 23237760, 52284960, 37346400, 11203920, 1551312, 96957, 2187;
24344320, 584263680, 1533692160, 1314593280, 492972480, 91010304, 8532216, 384912, 6561;
A223527
Triangle S(n,k) by rows: coefficients of 4^((n-1)/2)*(x^(1/4)*d/dx)^n when n=1,3,5,...
Original entry on oeis.org
1, 5, 4, 45, 72, 16, 585, 1404, 624, 64, 9945, 31824, 21216, 4352, 256, 208845, 835380, 742560, 228480, 26880, 1024, 5221125, 25061400, 27846000, 11424000, 2016000, 153600, 4096, 151412625, 847910700, 1130547600, 579768000, 136416000, 15590400, 831488, 16384
Offset: 1
Triangle begins:
1;
5, 4;
45, 72, 16;
585, 1404, 624, 64;
9945, 31824, 21216, 4352, 256;
208845, 835380, 742560, 228480, 26880, 1024;
5221125, 25061400, 27846000, 11424000, 2016000, 153600, 4096;
151412625, 847910700, 1130547600, 579768000, 136416000, 15590400, 831488, 16384;
Cf.
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522,
A223168-
A223172,
A223523-
A223532.
A223528
Triangle S(n,k) by rows: coefficients of 4^(n/2)*(x^(3/4)*d/dx)^n when n=0,2,4,6,...
Original entry on oeis.org
1, 1, 4, 5, 40, 16, 45, 540, 432, 64, 585, 9360, 11232, 3328, 256, 9945, 198900, 318240, 141440, 21760, 1024, 208845, 5012280, 10024560, 5940480, 1370880, 129024, 4096, 5221125, 146191500, 350859600, 259896000, 79968000, 11289600, 716800, 16384, 151412625
Offset: 1
Triangle begins:
1;
1, 4;
5, 40, 16;
45, 540, 432, 64;
585, 9360, 11232, 3328, 256;
9945, 198900, 318240, 141440, 21760, 1024;
208845, 5012280, 10024560, 5940480, 1370880, 129024, 4096;
5221125, 146191500, 350859600, 259896000, 79968000, 11289600, 716800, 16384;
151412625, 4845204000, 13566571200, 12059174400, 4638144000, 873062400, 83148800, 3801088, 65536;
Cf.
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522,
A223168-
A223172,
A223523-
A223532.
A223529
Triangle S(n,k) by rows: coefficients of 5^((n-1)/2)*(x^(1/5)*d/dx)^n when n=1,3,5,...
Original entry on oeis.org
1, 6, 5, 66, 110, 25, 1056, 2640, 1200, 125, 22176, 73920, 50400, 10500, 625, 576576, 2402400, 2184000, 682500, 81250, 3125, 17873856, 89369280, 101556000, 42315000, 7556250, 581250, 15625, 643458816, 3753509760, 5118422400, 2665845000, 634725000
Offset: 1
Triangle begins:
1;
6, 5;
66, 110, 25;
1056, 2640, 1200, 125;
22176, 73920, 50400, 10500, 625;
576576, 2402400, 2184000, 682500, 81250, 3125;
17873856, 89369280, 101556000, 42315000, 7556250, 581250, 15625;
643458816, 3753509760, 5118422400, 2665845000, 634725000, 73237500, 3937500, 78125;
Cf.
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522,
A223168-
A223172,
A223523-
A223532.
A223530
Triangle S(n,k) by rows: coefficients of 5^(n/2)*(x^(4/5)*d/dx)^n when n=0,2,4,6,...
Original entry on oeis.org
1, 1, 5, 6, 60, 25, 66, 990, 825, 125, 1056, 21120, 26400, 8000, 625, 22176, 554400, 924000, 420000, 65625, 3125, 576576, 17297280, 36036000, 21840000, 5118750, 487500, 15625, 17873856, 625584960, 1563962400, 1184820000, 370256250, 52893750, 3390625, 78125
Offset: 1
Triangle begins:
1;
1, 5;
6, 60, 25;
66, 990, 825, 125;
1056, 21120, 26400, 8000, 625;
22176, 554400, 924000, 420000, 65625, 3125;
576576, 17297280, 36036000, 21840000, 5118750, 487500, 15625;
17873856, 625584960, 1563962400, 1184820000, 370256250, 52893750, 3390625, 78125;
Cf.
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522,
A223168-
A223172,
A223523-
A223532.
A223531
Triangle S(n,k) by rows: coefficients of 6^((n-1)/2)*(x^(1/6)*d/dx)^n when n=1,3,5,...
Original entry on oeis.org
1, 7, 6, 91, 156, 36, 1729, 4446, 2052, 216, 43225, 148200, 102600, 21600, 1296, 1339975, 5742750, 5301000, 1674000, 200880, 7776, 49579075, 254978100, 294205500, 123876000, 22297680, 1726272, 46656, 2131900225, 12791401350, 17711171100, 9321669000
Offset: 1
Triangle begins:
1;
7, 6;
91, 156, 36;
1729, 4446, 2052, 216;
43225, 148200, 102600, 21600, 1296;
1339975, 5742750, 5301000, 1674000, 200880, 7776;
49579075, 254978100, 294205500, 123876000, 22297680, 1726272, 46656;
2131900225, 12791401350, 17711171100, 9321669000, 2237200560, 259803936, 14043456, 279936;
Cf.
A008277,
A019538,
A035342,
A035469,
A049029,
A049385,
A092082,
A132056,
A223511-
A223522,
A223168-
A223172,
A223523-
A223532.
Comments