cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A325262 Number of integer partitions of n whose omega-sequence does not cover an initial interval of positive integers.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 6, 7, 12, 18, 29, 38, 58, 77, 110, 145, 198, 257, 345, 441, 576, 733, 942, 1184, 1503, 1875, 2352, 2914, 3620, 4454, 5493, 6716, 8221, 10001, 12167, 14723, 17816, 21459, 25836, 30988, 37139, 44365, 52956, 63022, 74934, 88873, 105296, 124469
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1).

Examples

			The a(3) = 1 through a(9) = 18 partitions:
  (111)  (1111)  (2111)   (222)     (421)      (431)       (333)
                 (11111)  (321)     (2221)     (521)       (432)
                          (2211)    (4111)     (2222)      (531)
                          (3111)    (22111)    (3311)      (621)
                          (21111)   (31111)    (5111)      (3222)
                          (111111)  (211111)   (22211)     (6111)
                                    (1111111)  (32111)     (22221)
                                               (41111)     (32211)
                                               (221111)    (33111)
                                               (311111)    (42111)
                                               (2111111)   (51111)
                                               (11111111)  (222111)
                                                           (321111)
                                                           (411111)
                                                           (2211111)
                                                           (3111111)
                                                           (21111111)
                                                           (111111111)
		

Crossrefs

Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (frequency depth), A325249 (sum).

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    omseq[ptn_List]:=If[ptn=={},{},Length/@NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]];
    Table[Length[Select[IntegerPartitions[n],!normQ[omseq[#]]&]],{n,0,30}]

A325413 Largest sum of the omega-sequence of an integer partition of n.

Original entry on oeis.org

0, 1, 3, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
Offset: 0

Views

Author

Gus Wiseman, Apr 24 2019

Keywords

Comments

The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1) with sum 13.
Appears to contain all nonnegative integers except 2, 4, 6, 7, and 11.

Examples

			The partitions of 9 organized by sum of omega-sequence (first column) are:
   1: (9)
   4: (333)
   5: (81) (72) (63) (54)
   7: (621) (531) (432)
   8: (711) (522) (441)
   9: (6111) (3222) (222111)
  10: (51111) (33111) (22221) (111111111)
  11: (411111)
  12: (5211) (4311) (4221) (3321) (3111111) (2211111)
  13: (42111) (32211) (21111111)
  14: (321111)
The largest term in the first column is 14, so a(9) = 14.
		

Crossrefs

Row lengths of A325414.
Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (frequency depth), A325414 (omega-sequence sum).

Programs

  • Mathematica
    omseq[ptn_List]:=If[ptn=={},{},Length/@NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]];
    Table[Max[Total/@omseq/@IntegerPartitions[n]],{n,0,30}]

A325415 Number of distinct sums of omega-sequences of integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 8, 10, 11, 13, 12, 15, 14, 16, 18, 18, 18, 21, 20, 23, 23, 24, 24, 27, 27, 28, 29, 30, 30, 34, 32, 34, 35, 36, 37, 39, 38, 40, 41, 43, 42, 45, 44, 46, 48, 48, 48, 51, 50, 53, 53, 54, 54, 57, 57, 58, 59, 60, 60, 64
Offset: 0

Views

Author

Gus Wiseman, Apr 24 2019

Keywords

Comments

The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1) with sum 13.

Examples

			The partitions of 9 organized by sum of omega sequence (first column) are:
   1: (9)
   4: (333)
   5: (81) (72) (63) (54)
   7: (621) (531) (432)
   8: (711) (522) (441)
   9: (6111) (3222) (222111)
  10: (51111) (33111) (22221) (111111111)
  11: (411111)
  12: (5211) (4311) (4221) (3321) (3111111) (2211111)
  13: (42111) (32211) (21111111)
  14: (321111)
There are a total of 11 distinct sums {1,4,5,7,8,9,10,11,12,13,14}, so a(9) = 11.
		

Crossrefs

Number of nonzero terms in row n of A325414.
Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (frequency depth), A325414 (omega-sequence sum).

Programs

  • Mathematica
    omseq[ptn_List]:=If[ptn=={},{},Length/@NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]];
    Table[Length[Union[Total/@omseq/@IntegerPartitions[n]]],{n,0,30}]

A325412 Number of distinct omega-sequences of integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 5, 10, 9, 14, 15, 20, 21, 33, 30, 39, 45, 54, 54, 69, 68, 85, 90, 100, 104, 128, 127, 141, 153, 172, 175, 205, 203, 229, 240, 257, 274, 308, 309, 335, 356, 390, 395, 437, 444, 481, 506, 530, 549, 602, 609, 648, 672, 710, 727, 777, 798, 848, 871
Offset: 0

Views

Author

Gus Wiseman, Apr 24 2019

Keywords

Comments

The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1).

Examples

			The a(1) = 1 through a(9) = 15 omega-sequences:
  (1)  (1)   (1)    (1)     (1)     (1)     (1)      (1)      (1)
       (21)  (31)   (21)    (51)    (21)    (71)     (21)     (31)
             (221)  (41)    (221)   (31)    (221)    (41)     (91)
                    (221)   (3221)  (61)    (331)    (81)     (221)
                    (3221)  (4221)  (221)   (3221)   (221)    (331)
                                    (331)   (4221)   (331)    (621)
                                    (421)   (5221)   (421)    (3221)
                                    (3221)  (6221)   (3221)   (4221)
                                    (4221)  (43221)  (4221)   (5221)
                                    (5221)           (5221)   (6221)
                                                     (6221)   (7221)
                                                     (7221)   (8221)
                                                     (43221)  (43221)
                                                     (53221)  (53221)
                                                              (63221)
		

Crossrefs

Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (frequency depth), A325414 (omega-sequence sum).

Programs

  • Mathematica
    omseq[ptn_List]:=If[ptn=={},{},Length/@NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]];
    Table[Length[Union[omseq/@IntegerPartitions[n]]],{n,0,30}]

A225491 Maximal frequency depth for multisets over an alphabet of n letters.

Original entry on oeis.org

0, 4, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 1

Views

Author

Clark Kimberling, May 09 2013

Keywords

Comments

Frequency depth is defined at A225485. Suppose S is a multiset on an alphabet y(1),..,y(n). Let f(n) > 0 be the frequency of y(i) in S, so that F(S) (as at A225485) is the multiset {f(1),..,f(m)}, where m is the number of distinct terms in S. Let {g(1),..,g(k)} be the set of distinct terms of F(S), and let h(i) be the number of occurrences of g(i) in F(S). Then F(F(S)) is a partition p(m) of m, and D(F(F(S))) = D(p(m)), where D denotes frequency depth. To maximize D for n>1, put m = n to get a(n) = 2 + A225486(n), for n > 1.

Examples

			For n = 2, let the alphabet be {u,v}.  Then for some p>=0 and q>=0, S consists of p u's and q v's, so that F(S) = {p,q}.  Assume without loss of generality that p<=q.  If 1 <= p < q, then the depth of 4 is the number of arrows when we write S -> pq -> 11 -> 2 -> 1.  The other possibilities (p = 0, or p=q) for p and q lead to depths < 4, so that a(2) = 4.
		

Crossrefs

Programs

  • Mathematica
    c[s_] := c[s] = Select[Table[Count[s, i], {i, 1, Max[s]}], # > 0 &]
    f[s_] := f[s] = Drop[FixedPointList[c, s], -2]
    t[s_] := t[s] = Length[f[s]]
    u[n_] := u[n] = Table[t[Part[IntegerPartitions[n], k]], {k, 1,
         Length[IntegerPartitions[n]]}];
    v = Table[Max[u[n]], {n, 2, 40}]; (* A225491 *)
    Prepend[2 + v, 0]

Formula

a(1) = 0, a(n) = 2 + A225486(n) for n > 1.

A364810 a(n) = greatest number in row n of the array in A225485.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 8, 9, 12, 17, 26, 27, 44, 53, 76, 98, 128, 168, 212, 273, 344, 429, 525, 662, 796, 981, 1182, 1442, 1709, 2096, 2663, 3406, 4315, 5426, 6784, 8417, 10466, 12824, 15721, 19104, 23267, 27981, 33856, 40515, 48508, 57826, 68982, 81493, 96869
Offset: 1

Views

Author

Clark Kimberling, Sep 14 2023

Keywords

Comments

a(n) = the greatest number of partitions of n that all have the same frequency depth (as in A225485); this is also the greatest number of partitions of n that all have the same adjusted frequency depth (A325245).

Examples

			Following the example in A225485, the frequency depths for the partitions of 8 are 1,2,3,4,5, and these occur 1,3,6,9,3 times, respectively. The greatest of these is 9, so that a(8) = 9.
		

Crossrefs

Programs

  • Mathematica
    c[s_] := c[s] = Select[Table[Count[s, i], {i, 1, Max[s]}], # > 0 &];
    f[s_] := f[s] = Drop[FixedPointList[c, s], -2];
    t[s_] := t[s] = Length[f[s]];
    u[n_] := u[n] = Table[t[Part[IntegerPartitions[n], i]], {i, 1, Length[IntegerPartitions[n]]}];
    v = Table[Count[u[n], k], {n, 2, 12}, {k, 1, Max[u[n]]}]
    Map[Max, v]

Extensions

a(36)-a(49) from Alois P. Heinz, Sep 15 2023

A325256 Number of normal multisets of size n whose adjusted frequency depth is the maximum for multisets of that size.

Original entry on oeis.org

1, 1, 1, 2, 3, 10, 12, 12, 44, 128, 228, 422, 968, 1750, 420, 2100
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

A multiset is normal if its union is an initial interval of positive integers.
The adjusted frequency depth of a multiset is 0 if the multiset is empty, and otherwise it is one plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the multiset {1,1,2,2,3} has adjusted frequency depth 5 because we have {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}. The enumeration of integer partitions by adjusted frequency depth is given by A325280. The adjusted frequency depth of the integer partition with Heinz number n is A323014(n).

Examples

			The a(1) = 1 through a(7) = 12 multisets:
  {1}  {12}  {112}  {1123}  {11123}  {111123}  {1112234}
             {122}  {1223}  {11223}  {111234}  {1112334}
                    {1233}  {11233}  {112345}  {1112344}
                            {11234}  {122223}  {1122234}
                            {12223}  {122234}  {1123334}
                            {12233}  {122345}  {1123444}
                            {12234}  {123333}  {1222334}
                            {12333}  {123334}  {1222344}
                            {12334}  {123345}  {1223334}
                            {12344}  {123444}  {1223444}
                                     {123445}  {1233344}
                                     {123455}  {1233444}
		

Crossrefs

Programs

  • Mathematica
    nn=10;
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#1]]&,ptn,Length[#1]>1&]]];
    mfdm=Table[Max@@fdadj/@allnorm[n],{n,0,nn}];
    Table[Length[Select[allnorm[n],fdadj[#]==mfdm[[n+1]]&]],{n,0,nn}]
Previous Showing 21-27 of 27 results.