cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A225833 Number of binary pattern classes in the (9,n)-rectangular grid: two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.

Original entry on oeis.org

1, 272, 66048, 33632256, 17180262400, 8796137062400, 4503599962914816, 2305843036057239552, 1180591621026648948736, 604462909825456529211392, 309485009821644135887536128, 158456325028542467460946722816
Offset: 0

Views

Author

Yosu Yurramendi, May 16 2013

Keywords

Crossrefs

A005418 is the number of binary pattern classes in the (1,n)-rectangular grid.
A225826 to A225834 are the numbers of binary pattern classes in the (m,n)-rectangular grid, 1 < m < 11 .
A225910 is the table of (m,n)-rectangular grids.

Programs

  • Magma
    [2^(5*n-2)+2^(9*n-2)+(34-(17-Sqrt(2))*(1+(-1)^n))*Sqrt(2)^(9*n-5): n in [0..16]]; // Vincenzo Librandi, Sep 04 2013
  • Mathematica
    LinearRecurrence[{544, -15872, -278528, 8388608}, {1, 272, 66048, 33632256}, 20] (* Bruno Berselli, May 17 2013 *)
    CoefficientList[Series[(1 - 272 x - 66048 x^2 + 2297856 x^3) / ((1 - 32 x) (1 - 512 x) (1 - 512 x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 04 2013 *)

Formula

a(n) = 2^9*a(n-1) + 2^9*a(n-2) - (2^9)^2*a(n-3) - 2^(((9+1)/2)*n - 3)*(2^((9-1)/2)-1) with n>2, a(0)=1, a(1)=272, a(2)=66048.
a(n) = 2^(9n/2-1)*(2^(9n/2-1) + 2^(n/2-1) + 1) if n is even,
a(n) = 2^((9n-1)/2-1)*(2^((9n-1)/2) + 2^((n-1)/2) + 2^((9-1)/2) + 1) if n is odd.
G.f.: (1-272*x-66048*x^2+2297856*x^3)/((1-32*x)*(1-512*x)*(1-512*x^2)). [Bruno Berselli, May 17 2013]
a(n) = 2^(5n-2)+2^(9n-2)+(34-(17-sqrt(2))*(1+(-1)^n))*sqrt(2)^(9n-5). [Bruno Berselli, May 17 2013]

A240526 a(n) = 2^(n-2)*(2^(n+4)-(-1)^n+13).

Original entry on oeis.org

7, 23, 76, 284, 1072, 4208, 16576, 65984, 262912, 1050368, 4197376, 16784384, 67121152, 268464128, 1073790976, 4295081984, 17180065792, 68719935488, 274878693376, 1099513462784, 4398049656832, 17592193384448, 70368756760576, 281475006070784, 1125899957174272
Offset: 0

Views

Author

Vincenzo Librandi, Apr 07 2014

Keywords

Crossrefs

Cf. A225826.

Programs

  • Magma
    [2^(n-2)*(2^(n+4)-(-1)^n+13): n in [0..25]];
    
  • Magma
    I:=[7,23,76]; [n le 3 select I[n] else 4*Self(n-1)+4*Self(n-2)-16*Self(n-3): n in [1..30]];
    
  • Maple
    A240526:=n->2^(n-2)*(2^(n+4)-(-1)^n+13); seq(A240526(n), n=0..30); # Wesley Ivan Hurt, Apr 10 2014
  • Mathematica
    CoefficientList[Series[(7 - 5 x - 44 x^2)/(1 - 4 x - 4 x^2 + 16 x^3), {x, 0, 30}], x]
  • PARI
    a(n)=(2^(n+4)-(-1)^n+13)<<(n-2) \\ Charles R Greathouse IV, Aug 26 2014

Formula

G.f.: (7-5*x-44*x^2)/(1-4*x-4*x^2+16*x^3).
a(n) = 4*a(n-1)+4*a(n-2)-16*a(n-3) for n>2.
Previous Showing 21-22 of 22 results.