A238558
Number T(n,k) of equivalence classes of ways of placing k 3 X 3 tiles in an n X 8 rectangle under all symmetry operations of the rectangle; irregular triangle T(n,k), n>=3, 0<=k<=2*floor(n/3), read by rows.
Original entry on oeis.org
1, 3, 4, 1, 3, 8, 1, 6, 18, 1, 6, 36, 32, 13, 1, 9, 64, 128, 87, 1, 9, 100, 308, 332, 1, 12, 146, 647, 1118, 451, 68, 1, 12, 200, 1160, 3022, 2756, 824, 1, 15, 264, 1958, 6882, 10076, 5009, 1, 15, 336, 3020, 13798, 28774, 24237, 4774, 346
Offset: 3
The first 8 rows of T(n,k) are:
.\ k 0 1 2 3 4 5 6
n
3 1 3 4
4 1 3 8
5 1 6 18
6 1 6 36 32 13
7 1 9 64 128 87
8 1 9 100 308 332
9 1 12 146 647 1118 451 68
10 1 12 200 1160 3022 2756 824
Cf.
A034851,
A226048,
A102541,
A226290,
A238009,
A228570,
A225812,
A238189,
A238190,
A228572,
A228022,
A231145,
A231473,
A231568,
A232440,
A228165,
A238550-
A238552,
A228166,
A238555,
A238556,
A228167,
A238557,
A238559,
A228168,
A238581-
A238583,
A228169,
A238586,
A238592.
A238582
Number T(n,k) of equivalence classes of ways of placing k 3 X 3 tiles in an n X 9 rectangle under all symmetry operations of the rectangle; irregular triangle T(n,k), n>=3, 0<=k<=2*floor(n/3), read by rows.
Original entry on oeis.org
1, 4, 6, 1, 1, 4, 12, 3, 1, 8, 28, 10, 1, 8, 54, 82, 49, 8, 1, 1, 12, 95, 283, 311, 91, 10, 1, 12, 146, 647, 1118, 451, 68, 1, 16, 212, 1300, 3380, 3076, 1200, 209, 20, 1, 1, 16, 288, 2260, 8443, 13336, 9364, 2819, 387, 20
Offset: 3
The first 9 rows of T(n,k) are:
.\ k 0 1 2 3 4 5 6 7 8 9
n
3 1 4 6 1
4 1 4 12 3
5 1 8 28 10
6 1 8 54 82 49 8 1
7 1 12 95 283 311 91 10
8 1 12 146 647 1118 451 68
9 1 16 212 1300 3380 3076 1200 209 20 1
10 1 16 288 2260 8443 13336 9364 2819 387 20
11 1 20 379 3709 18203 42412 44599 19051 3682 282
Cf.
A034851,
A226048,
A102541,
A226290,
A238009,
A228570,
A225812,
A238189,
A238190,
A228572,
A228022,
A231145,
A231473,
A231568,
A232440,
A228165,
A238550-
A238552,
A228166,
A238555,
A238556,
A228167,
A238557-
A238559,
A228168,
A238581,
A238583,
A228169,
A238586,
A238592.
A238551
Number T(n,k) of equivalence classes of ways of placing k 3 X 3 tiles in an n X 6 rectangle under all symmetry operations of the rectangle; irregular triangle T(n,k), n>=3, 0<=k<=2*floor(n/3), read by rows.
Original entry on oeis.org
1, 2, 1, 1, 2, 2, 1, 4, 4, 1, 4, 11, 3, 1, 1, 6, 21, 13, 4, 1, 6, 36, 32, 13, 1, 8, 54, 82, 49, 8, 1, 1, 8, 77, 165, 151, 44, 6, 1, 10, 103, 319, 382, 173, 31, 1, 10, 134, 530, 867, 559, 164, 12, 1, 1, 12, 168, 852, 1789, 1632, 705, 119, 9
Offset: 3
The first 12 rows of T(n,k) are:
.\ k 0 1 2 3 4 5 6 7 8
n
3 1 2 1
4 1 2 2
5 1 4 4
6 1 4 11 3 1
7 1 6 21 13 4
8 1 6 36 32 13
9 1 8 54 82 49 8 1
10 1 8 77 165 151 44 6
11 1 10 103 319 382 173 31
12 1 10 134 530 867 559 164 12 1
13 1 12 168 852 1789 1632 705 119 9
14 1 12 207 1255 3409 4074 2406 618 66
Cf.
A034851,
A226048,
A102541,
A226290,
A238009,
A228570,
A225812,
A238189,
A238190,
A228572,
A228022,
A231145,
A231473,
A231568,
A232440,
A228165,
A238550,
A238552,
A228166,
A238555,
A238556,
A228167,
A238557,
A238558,
A238559,
A228168,
A238581,
A238582,
A238583,
A228169,
A238586,
A238592.
A192928
The Gi1 and Gi2 sums of Losanitsch's triangle A034851.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 3, 3, 5, 6, 9, 11, 16, 20, 29, 37, 53, 69, 98, 130, 183, 245, 343, 463, 646, 877, 1220, 1664, 2310, 3161, 4381, 6009, 8319, 11430, 15811, 21751, 30070, 41405, 57216, 78836, 108906, 150130, 207346
Offset: 0
- R. J. Mathar, Paving rectangular regions with rectangular tiles,...., arXiv:1311.6135 [math.CO], Table 25.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1,1,0,-1,0,1,-1,0,0,-1).
-
A192928 := proc(n): (A003269(n+1)+x(n)+x(n-1)+x(n-4))/2 end: A003269 := proc(n): sum(binomial(n-1-3*j, j), j=0..(n-1)/3) end: x:=proc(n): if type(n,even) then A003269(n/2+1) else 0 fi: end: seq(A192928(n),n=0..42);
-
LinearRecurrence[{1, 1, -1, 1, 0, -1, 0, 1, -1, 0, 0, -1}, {1, 1, 1, 1, 2, 2, 3, 3, 5, 6, 9, 11}, 43] (* Jean-François Alcover, Nov 16 2017 *)
A005691
Number of Twopins positions.
Original entry on oeis.org
1, 2, 3, 5, 7, 10, 13, 18, 24, 35, 50, 75, 109, 161, 231, 336, 482, 703, 1020, 1498, 2188, 3214, 4694, 6877, 10039, 14699, 21487, 31489, 46097, 67582, 98977, 145071, 212463, 311344, 456045, 668328, 979182, 1435107, 2102900, 3082037, 4516347, 6618985, 9699527, 14215176
Offset: 6
- R. K. Guy, ``Anyone for Twopins?,'' in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 6..1000
- R. K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [Annotated scanned copy, with permission]
-
CoefficientList[Series[((1 - x^2 + x^3 - 2*x^6 - x^7 - x^8 - x^9 - x^10 - x^11))/((x^3 - x + 1) (x^3 + x - 1) (x^6 + x^2 - 1)), {x, 0, 50}], x] (* Wesley Ivan Hurt, May 03 2017 *)
A230447
T(n, k) = T(n-1, k) + T(n-1, k-1) + A230135(n, k) with T(n, 0) = A008619(n) and T(n, n) = A080239(n+1), n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 2, 4, 5, 3, 3, 6, 9, 8, 6, 3, 9, 16, 17, 14, 9, 4, 12, 25, 33, 32, 23, 15, 4, 16, 38, 58, 65, 55, 39, 24, 5, 20, 54, 96, 124, 120, 94, 63, 40, 5, 25, 75, 150, 220, 244, 215, 157, 103, 64, 6, 30, 100, 225, 371, 464, 459, 372, 261, 167, 104
Offset: 0
The first few rows of triangle T(n, k) n >= 0 and 0 <= k <= n.
n/k 0 1 2 3 4 5 6 7
------------------------------------------------
0| 1
1| 1, 1
2| 2, 2, 2
3| 2, 4, 5, 3
4| 3, 6, 9, 8, 6
5| 3, 9, 16, 17, 14, 9
6| 4, 12, 25, 33, 32, 23, 15
7| 4, 16, 38, 58, 65, 55, 39, 24
The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0.
n/k 0 1 2 3 4 5 6 7
------------------------------------------------
0| 1, 1, 2, 3, 6, 9, 15, 24
1| 1, 2, 5, 8, 14, 23, 39, 63
2| 2, 4, 9, 17, 32, 55, 94, 157
3| 2, 6, 16, 33, 65, 120, 215, 372
4| 3, 9, 25, 58, 124, 244, 459, 831
5| 3, 12, 38, 96, 220, 464, 924, 1755
6| 4, 16, 54, 150, 371, 835, 1759, 3514
7| 4, 20, 75, 225, 596, 1431, 3191, 6705
-
T := proc(n, k): add(A035317(n-i, n-k+i), i=0..floor(k/2)) end: A035317 := proc(n, k): add((-1)^(i+k) * binomial(i+n-k+1, i), i=0..k) end: seq(seq(T(n, k), k=0..n), n=0..10); # End first program.
T := proc(n, k) option remember: if k=0 then return(A008619(n)) elif k=n then return(A080239(n+1)) else A230135(n, k) + procname(n-1, k) + procname(n-1, k-1) fi: end: A008619 := n -> floor(n/2) +1: A080239 := n -> add(combinat[fibonacci](n-4*k), k=0..floor((n-1)/4)): A230135 := proc(n, k): if ((k mod 4 = 2) and (n mod 2 = 1)) or ((k mod 4 = 0) and (n mod 2 = 0)) then return(1) else return(0) fi: end: seq(seq(T(n, k), k=0..n), n=0..10); # End second program.
A257523
Number T(n,k) of equivalence classes of ways of placing k 4 X 4 tiles in an n X 7 rectangle under all symmetry operations of the rectangle; irregular triangle T(n,k), n>=4, 0<=k<=floor(n/4), read by rows.
Original entry on oeis.org
1, 2, 1, 2, 1, 4, 1, 4, 1, 6, 6, 1, 6, 14, 1, 8, 28, 1, 8, 44, 1, 10, 66, 20, 1, 10, 90, 64, 1, 12, 120, 168, 1, 12, 152, 320, 1, 14, 190, 572, 72, 1, 14, 230, 896, 328, 1, 16, 276, 1360, 984, 1, 16, 324, 1920, 2264, 1, 18, 378, 2660, 4528, 272
Offset: 4
The first 9 rows of T(n,k) are:
.\ k 0 1 2 3
n
4 1 2
5 1 2
6 1 4
7 1 4
8 1 6 6
9 1 6 14
10 1 8 28
11 1 8 44
12 1 10 66 20
13 1 10 90 64
14 1 12 120 168
15 1 12 152 320
Cf.
A034851,
A226048,
A102541,
A226290,
A238009,
A228570,
A225812,
A238189,
A238190,
A228572,
A228022,
A231145,
A231473,
A231568,
A232440,
A228165,
A238550,
A238551,
A238552,
A228166,
A238555,
A238556,
A228167,
A238557,
A238558,
A238559,
A228168,
A238581,
A238582,
A238583,
A228169,
A238586,
A238592
-
T(n,k)={(4^k*binomial(n-3*k,k) + ((n%2==0||k%2==0)+(k%2==0)+(k==0)) * 4^((k+1)\2)*binomial((n-3*k-(k%2)-(n%2))/2,k\2))/4}
for(n=4,15,for(k=0,(n\4), print1(T(n,k), ", "));print) \\ Andrew Howroyd, May 29 2017
Comments