cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A229312 Numbers n such that A031971(47058*n) == n (mod 47058*n).

Original entry on oeis.org

5, 15, 25, 45, 55, 65, 75, 85, 95, 115, 125, 135, 145, 155, 165, 185, 195, 205, 215, 225, 255, 265, 275, 295, 305, 325, 345, 355, 365, 375, 395, 405, 415, 425, 435, 445, 465, 475, 485, 495, 505, 515, 535, 545, 555, 565, 575, 585, 605, 615, 625, 635, 645, 655
Offset: 1

Views

Author

Keywords

Comments

The number 47058 occurring in the name is the sixth term of A230311.
The asymptotic density lies in the interval [0.0560465, 0.0800567].
Complement of A230313 .
For n<235295, A031971(47058*n) == n (mod 47058*n) if and only if A031971(2214502422*n) <> n (mod 2214502422*n).
The numbers in A230311 are the values of k such that the set {n : A031971(k*n)== n (mod k*n)} is nonempty.

Crossrefs

Cf. A231562 (numbers n such that A031971(8490421583559688410706771261086*n) == n (mod 8490421583559688410706771261086*n)).
Cf. A229312 (numbers n such that A031971(47058*n) == n (mod 47058*n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229313 (numbers n such that A031971(47058*n) <> n (mod 47058*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).

Programs

  • Mathematica
    fa = FactorInteger; Car[k_, n_] := Mod[n - Sum[If[IntegerQ[k/(fa[n][[i,
       1]] - 1)], n/fa[n][[i, 1]], 0], {i, 1, Length[fa[n]]}], n]; supercar[k_, n_] := If[k == 1 || Mod[k, 2] == 0 || Mod[n, 4] > 0, Car[k,n], Mod[Car[k, n] - n/2, n]]; Select[Range[1000], supercar[47058*#, 47058*#] == # &]

A231562 Numbers n such that A031971(8490421583559688410706771261086*n) == n (mod 8490421583559688410706771261086*n).

Original entry on oeis.org

39607528021345872635, 118822584064037617905, 198037640106729363175, 356467752192112853715, 435682808234804598985, 514897864277496344255, 594112920320188089525, 673327976362879834795, 752543032405571580065, 910973144490955070605, 990188200533646815875
Offset: 1

Views

Author

Keywords

Comments

The number 8490421583559688410706771261086 occurring in the name is the 8th term of A230311.
The numbers in A230311 are the values of k such that the set {n : A031971(k*n)== n (mod k*n)} is nonempty.

Crossrefs

Cf. A231562 (numbers n such that A031971(8490421583559688410706771261086*n) == n (mod 8490421583559688410706771261086*n)).
Cf. A229312 (numbers n such that A031971(47058*n) == n (mod 47058*n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229313 (numbers n such that A031971(47058*n) <> n (mod 47058*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).

Programs

  • Mathematica
    fa = FactorInteger; Car[k_, n_] := Mod[n - Sum[If[IntegerQ[k/(fa[n][[i, 1]] - 1)], n/fa[n][[i,1]], 0], {i, 1, Length[fa[n]]}], n]; supercar[k_, n_] := If[k == 1 ||  Mod[k, 2] == 0 || Mod[n, 4] > 0, Car[k, n], Mod[Car[k, n] - n/2,]];  Select[39607528021345872635*Range[15],supercar[8490421583559688410706771261086*#, 8490421583559688410706771261086*#] == # &]

A230313 Numbers n such that A031971(47058*n) <> n (mod 47058*n).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73
Offset: 1

Views

Author

Keywords

Comments

The asymptotic density lies in the interval [0.919943, 0.943954].
Complement of A229312.
The numbers in A230311 are the values of k such that the set {n : A031971(k*n)== n (mod k*n)} is nonempty.

Crossrefs

Cf. A231562 (numbers n such that A031971(8490421583559688410706771261086*n) == n (mod 8490421583559688410706771261086*n)).
Cf. A229312 (numbers n such that A031971(47058*n) == n (mod 47058*n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229313 (numbers n such that A031971(47058*n) <> n (mod 47058*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).

Programs

  • Mathematica
    fa = FactorInteger; Car[k_, n_] := Mod[n - Sum[If[IntegerQ[k/(fa[n][[i,
       1]] - 1)], n/fa[n][[i, 1]], 0], {i, 1, Length[fa[n]]}], n]; supercar[k_, n_] := If[k == 1 || Mod[k, 2] == 0 || Mod[n, 4] > 0, Car[k,n], Mod[Car[k, n] - n/2, n]]; Select[Range[1000], !supercar[47058*#, 47058*#] == # &]
Previous Showing 11-13 of 13 results.