cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A377558 Decimal expansion of Pi^3/64 + 7*zeta(3)/16.

Original entry on oeis.org

1, 0, 1, 0, 3, 7, 2, 9, 6, 8, 2, 6, 2, 0, 0, 7, 1, 9, 0, 1, 0, 4, 2, 0, 2, 8, 6, 8, 5, 8, 4, 7, 1, 8, 6, 7, 0, 9, 9, 4, 4, 5, 1, 6, 3, 6, 7, 4, 0, 9, 2, 3, 0, 6, 8, 5, 0, 5, 1, 2, 7, 2, 1, 3, 3, 3, 4, 0, 2, 9, 1, 3, 5, 6, 1, 6, 9, 1, 3, 6, 3, 3, 7, 9, 3, 5, 5, 4, 1, 4, 8, 3, 3, 8, 5, 0, 4, 2, 7, 2
Offset: 1

Views

Author

Stefano Spezia, Nov 01 2024

Keywords

Examples

			1.01037296826200719010420286858471867099445163674...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 42.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^3/64+7Zeta[3]/16,10,100][[1]]

Formula

Equals Sum_{k>=0} 1/(4*k + 1)^3 (see Finch).
Equals -psi''(1/4)/128 = -(psi''(1/8) + psi''(5/8))/1024 (see Shamos).
Equals hypergeom([1/4, 1/4, 1/4, 1], [5/4, 5/4, 5/4], 1). - R. J. Mathar, Jul 14 2025

A377559 Decimal expansion of Sum_{k>=0} 1/(5*k + 1)^3.

Original entry on oeis.org

1, 0, 0, 5, 9, 1, 2, 1, 4, 4, 4, 5, 7, 7, 4, 3, 7, 3, 2, 2, 3, 6, 7, 9, 2, 3, 6, 0, 1, 4, 7, 0, 0, 1, 4, 4, 8, 2, 5, 4, 9, 3, 6, 1, 1, 2, 0, 6, 4, 0, 2, 4, 5, 8, 2, 4, 7, 0, 3, 3, 3, 9, 6, 5, 0, 7, 1, 0, 0, 0, 5, 7, 4, 8, 0, 7, 3, 9, 3, 4, 6, 2, 0, 2, 7, 7, 4, 1, 1, 7, 8, 1, 0, 7, 3, 1, 2, 0, 3, 6
Offset: 1

Views

Author

Stefano Spezia, Nov 01 2024

Keywords

Examples

			1.00591214445774373223679236014700144825493611206...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-PolyGamma[2,1/5]/250,10,100][[1]]

Formula

Equals -psi''(1/5)/250 (see Shamos).

A377560 Decimal expansion of Pi^3/(36*sqrt(3)) + 91*zeta(3)/216.

Original entry on oeis.org

1, 0, 0, 3, 6, 8, 5, 5, 1, 5, 3, 4, 7, 9, 5, 2, 6, 9, 7, 0, 6, 3, 2, 3, 0, 1, 3, 7, 0, 2, 4, 8, 6, 0, 5, 7, 3, 1, 5, 2, 7, 2, 7, 8, 4, 3, 5, 9, 3, 8, 9, 3, 3, 2, 7, 8, 6, 6, 5, 7, 9, 0, 8, 5, 3, 1, 5, 3, 9, 2, 7, 3, 2, 7, 3, 6, 5, 8, 9, 1, 5, 9, 3, 9, 5, 6, 2, 5, 8, 3, 4, 8, 5, 8, 4, 6, 1, 0, 4, 0
Offset: 1

Views

Author

Stefano Spezia, Nov 01 2024

Keywords

Examples

			1.00368551534795269706323013702486057315272784359...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 42.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^3/(36*Sqrt[3])+91*Zeta[3]/216,10,100][[1]]

Formula

Equals Sum_{k>=0} 1/(6*k + 1)^3 (see Finch).
Equals -psi''(1/6)/432 (see Shamos).

A381822 Odd cubefree numbers: odd numbers that are not divisible by any cube greater than 1.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 127, 129, 131
Offset: 1

Views

Author

Amiram Eldar, Mar 08 2025

Keywords

Comments

Numbers whose prime factorization has only odd primes, and all its exponents are smaller than 3 (except for 1 whose prime factorization is empty).
The asymptotic density of this sequence is 4/(7*zeta(3)) = 1/(2*A233091) = 0.475375641474689982104... .
In general, the asymptotic density of odd k-free numbers (numbers that are not divisible by a k-th power other than 1, k >= 2) is 2^(k-1)/((2^k-1) * zeta(k)).

Crossrefs

Intersection of A005408 and A004709.
A056911 is a subsequence.

Programs

  • Mathematica
    cubeFreeQ[n_] := AllTrue[FactorInteger[n][[;;, 2]], # < 3 &]; Select[Range[1, 150, 2], cubeFreeQ]
  • PARI
    isok(k) = k % 2 && if(k == 1, 1, vecmax(factor(k)[, 2]) < 3);

A273839 Decimal expansion the Bessel moment c(4,0) = Integral_{0..inf} K_0(x)^4 dx, where K_0 is the modified Bessel function of the second kind.

Original entry on oeis.org

2, 7, 2, 4, 1, 3, 3, 8, 4, 1, 7, 8, 0, 5, 9, 7, 3, 4, 0, 6, 7, 0, 9, 9, 8, 0, 2, 6, 4, 5, 5, 7, 9, 3, 5, 0, 2, 3, 9, 9, 7, 8, 8, 8, 0, 9, 8, 6, 1, 8, 2, 7, 4, 6, 5, 5, 1, 2, 2, 9, 0, 1, 8, 7, 9, 1, 9, 5, 3, 1, 4, 7, 8, 4, 8, 4, 8, 3, 9, 3, 0, 2, 7, 3, 6, 9, 4, 0, 7, 4, 6, 0, 5, 3, 6, 1, 5, 9, 8, 4, 7, 3
Offset: 2

Views

Author

Jean-François Alcover, Jun 01 2016

Keywords

Examples

			27.2413384178059734067099802645579350239978880986182746551229...
		

Crossrefs

Cf. A273816 (c(3,0)), A273817 (c(3,1)), A273818 (c(3,2)), A273819 (c(3,3)), A233091 (c(4,1)), A273840 (c(4,2)), A273841 (c(4,3)).

Programs

  • Mathematica
    c[4, 0] = (Pi^4/4)*HypergeometricPFQ[{1/2, 1/2, 1/2, 1/2}, {1, 1, 1}, 1];
    RealDigits[c[4, 0], 10, 102][[1]]

Formula

c(4,0) = (Pi^4/4) Sum_{n>=0} binomial(2n, n)^4/2^(8n).
Equals (Pi^4/4) 4F3(1/2, 1/2, 1/2, 1/2; 1, 1, 1; 1), where 4F3 is the generalized hypergeometric function.

A273840 Decimal expansion the Bessel moment c(4,2) = Integral_{0..inf} x^2 K_0(x)^4 dx, where K_0 is the modified Bessel function of the second kind.

Original entry on oeis.org

1, 9, 5, 7, 7, 0, 6, 2, 5, 2, 4, 7, 2, 8, 7, 9, 1, 7, 2, 1, 7, 4, 5, 8, 0, 8, 3, 2, 7, 5, 5, 7, 7, 2, 3, 7, 4, 1, 8, 8, 2, 7, 8, 9, 6, 9, 6, 6, 5, 2, 5, 0, 2, 8, 1, 9, 7, 9, 3, 3, 8, 4, 6, 1, 6, 6, 3, 5, 2, 9, 9, 2, 9, 6, 9, 4, 4, 4, 4, 6, 2, 6, 5, 5, 3, 5, 2, 9, 1, 1, 1, 6, 3, 8, 5, 8, 0, 8, 5, 7, 6, 8, 8, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 01 2016

Keywords

Examples

			0.195770625247287917217458083275577237418827896966525028197933846...
		

Crossrefs

Cf. A273816 (c(3,0)), A273817 (c(3,1)), A273818 (c(3,2)), A273819 (c(3,3)), A273839 (c(4,0)), A233091 (c(4,1)), A273841 (c(4,3)).

Programs

  • Mathematica
    c[4, 2] = (Pi^4/64)*(4*HypergeometricPFQ[{1/2, 1/2, 1/2, 1/2}, {1, 1, 1}, 1] - 3*HypergeometricPFQ[{1/2, 1/2, 1/2, 1/2}, {2, 1, 1}, 1]) - 3*Pi^2 / 16;
    RealDigits[c[4, 2], 10, 104][[1]]

Formula

c(4,2) = (Pi^4/64)*(4 * 4F3(1/2, 1/2, 1/2, 1/2; 1, 1, 1; 1) - 3 * 4F3(1/2, 1/2, 1/2, 1/2; 2, 1, 1; 1)) - 3*Pi^2/16, where 4F3 is the generalized hypergeometric function.

A273841 Decimal expansion the Bessel moment c(4,3) = Integral_{0..inf} x^3 K_0(x)^4 dx, where K_0 is the modified Bessel function of the second kind.

Original entry on oeis.org

0, 7, 5, 4, 4, 9, 9, 4, 7, 5, 6, 6, 1, 6, 1, 2, 4, 9, 9, 3, 1, 1, 9, 2, 7, 2, 2, 8, 3, 0, 6, 2, 9, 6, 8, 5, 4, 7, 9, 8, 4, 0, 7, 5, 1, 4, 4, 9, 4, 8, 4, 1, 3, 0, 3, 9, 2, 0, 5, 9, 4, 0, 2, 7, 3, 1, 0, 2, 7, 1, 0, 7, 5, 1, 5, 7, 5, 5, 9, 8, 8, 4, 7, 8, 2, 8, 7, 2, 2, 2, 3, 5, 2, 0, 4, 2, 0, 8, 7, 7, 1, 9, 4, 8
Offset: 0

Views

Author

Jean-François Alcover, Jun 01 2016

Keywords

Examples

			0.075449947566161249931192722830629685479840751449484130392059402731...
		

Crossrefs

Cf. A273816 (c(3,0)), A273817 (c(3,1)), A273818 (c(3,2)), A273819 (c(3,3)), A273839 (c(4,0)), A233091 (c(4,1)), A273840 (c(4,2)).

Programs

  • Mathematica
    c[4, 3] = (7/32)*Zeta[3] - 3/16;
    RealDigits[c[4, 3], 10, 103][[1]]
  • PARI
    zeta(3)*7/32-3/16 \\ Charles R Greathouse IV, Oct 23 2023

Formula

c(4,3) = (7/32)*zeta(3) - 3/16.

A247450 Decimal expansion of c(4), a constant appearing in certain Euler double sums not expressible in terms of well-known constants.

Original entry on oeis.org

2, 1, 1, 7, 1, 4, 1, 7, 3, 4, 7, 7, 7, 0, 3, 9, 4, 1, 1, 1, 2, 9, 1, 0, 0, 2, 2, 6, 0, 1, 2, 4, 5, 1, 7, 5, 1, 9, 1, 7, 6, 8, 0, 7, 6, 6, 9, 1, 6, 0, 8, 4, 0, 6, 9, 3, 6, 7, 6, 6, 3, 9, 0, 2, 7, 0, 4, 9, 4, 8, 2, 1, 2, 9, 8, 0, 6, 7, 5, 0, 9, 4, 9, 6, 0, 3, 6, 2, 6, 6, 0, 6, 8, 7, 7, 9, 0, 4, 6, 6, 3, 4, 5, 5
Offset: 1

Views

Author

Jean-François Alcover, Sep 17 2014

Keywords

Examples

			2.117141734777039411129100226012451751917680766916084...
		

Crossrefs

Cf. A002162 c(1), A072691 c(2), A233091 c(3).

Programs

  • Mathematica
    c[4] = (1/12)*((-Pi^2)*Log[2]^2 + Log[2]^4 + 24*PolyLog[4, 1/2] + 21*Log[2]*Zeta[3]); RealDigits[c[4], 10, 104] // First

Formula

c(n) = sum_{k=0..n-2} (n-2)!/k!*log(2)^k*Li_(n-k)(1/2) + log(2)^n/n.
c(4) = (1/12)*((-Pi^2)*log(2)^2 + log(2)^4 + 24*Li_4(1/2) + 21*log(2)*zeta(3)).

A251967 Decimal expansion of 29*Pi^3/864.

Original entry on oeis.org

1, 0, 4, 0, 7, 1, 9, 9, 3, 4, 8, 7, 1, 1, 7, 4, 5, 1, 9, 7, 7, 8, 7, 1, 8, 9, 0, 8, 5, 0, 2, 2, 4, 5, 9, 0, 3, 7, 7, 8, 3, 9, 5, 1, 0, 2, 3, 2, 7, 1, 6, 2, 1, 7, 9, 5, 4, 8, 8, 3, 2, 8, 7, 6, 1, 6, 9, 4, 2, 7, 6, 0, 7, 1, 8, 3, 4, 5, 5, 4, 1, 0, 9, 8, 3, 1, 4
Offset: 1

Views

Author

Bruno Berselli, Dec 12 2014

Keywords

Examples

			1.040719934871174519778718908502245903778395102327162179548832876169...
		

Crossrefs

Cf. similar sums:
A233091 for Sum_{i>=0} 1/(2i+1)^3;
A153071 for Sum_{i>=0} (-1)^i/(2i+1)^3;
A251809 for Sum_{i>=0} (-1)^floor(i/2)/(2i+1)^3.

Programs

Formula

Equals Sum_{i>=0} (-1)^floor(i/3)/(2i+1)^3 = +1 +1/3^3 +1/5^3 -1/7^3 -1/9^3 -1/11^3 +1/13^3 +1/15^3 +1/17^3 - ...

A381313 Numbers that are divisible by the cube of an odd prime.

Original entry on oeis.org

27, 54, 81, 108, 125, 135, 162, 189, 216, 243, 250, 270, 297, 324, 343, 351, 375, 378, 405, 432, 459, 486, 500, 513, 540, 567, 594, 621, 625, 648, 675, 686, 702, 729, 750, 756, 783, 810, 837, 864, 875, 891, 918, 945, 972, 999, 1000, 1026, 1029, 1053, 1080, 1107, 1125
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2025

Keywords

Comments

Numbers whose odd part is not cubefree.
The asymptotic density of this sequence is 1 - 8/(7*zeta(3)) = 1 - 1/A233091 = 0.04924871705062003579... .

Crossrefs

Subsequence of A046099 and A038838.

Programs

  • Mathematica
    cubeFreeQ[k_] := Max[FactorInteger[k][[;;, 2]]] < 3; q[k_] := !cubeFreeQ[k / 2^IntegerExponent[k, 2]]; Select[Range[1200], q]
  • PARI
    iscubefree(k) = if(k == 1, 1, vecmax(factor(k)[, 2]) < 3);
    isok(k) = !iscubefree(k >> valuation(k, 2));
Previous Showing 11-20 of 21 results. Next