A027767 a(n) = (n+1)*binomial(n+1,7).
7, 64, 324, 1200, 3630, 9504, 22308, 48048, 96525, 183040, 330616, 572832, 957372, 1550400, 2441880, 3751968, 5638611, 8306496, 12017500, 17102800, 23976810, 33153120, 45262620, 61074000, 81516825, 107707392, 140977584, 182906944, 235358200, 300516480, 380932464
Offset: 6
Links
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Programs
-
Mathematica
Table[(n+1)Binomial[n+1,7],{n,6,40}] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{7,64,324,1200,3630,9504,22308,48048,96525},30] (* Harvey P. Dale, Mar 13 2016 *)
Formula
G.f.: (7+x)*x^6/(1-x)^9.
From Amiram Eldar, Jan 30 2022: (Start)
Sum_{n>=6} 1/a(n) = 7*Pi^2/6 - 6811/600.
Sum_{n>=6} (-1)^n/a(n) = 7*Pi^2/12 + 2912*log(2)/15 - 252343/1800. (End)
Extensions
Incorrect formula deleted by R. J. Mathar, Feb 13 2016
Comments