cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A027767 a(n) = (n+1)*binomial(n+1,7).

Original entry on oeis.org

7, 64, 324, 1200, 3630, 9504, 22308, 48048, 96525, 183040, 330616, 572832, 957372, 1550400, 2441880, 3751968, 5638611, 8306496, 12017500, 17102800, 23976810, 33153120, 45262620, 61074000, 81516825, 107707392, 140977584, 182906944, 235358200, 300516480, 380932464
Offset: 6

Views

Author

Thi Ngoc Dinh (via R. K. Guy)

Keywords

Comments

Number of 9-subsequences of [ 1, n ] with just 1 contiguous pair.
229*a(n) is the number of permutations of (n+1) symbols that 7-commute with an (n+1)-cycle (see A233440 for definition), where 229 = A000757(7). - Luis Manuel Rivera Martínez, Feb 07 2014

Crossrefs

Programs

  • Mathematica
    Table[(n+1)Binomial[n+1,7],{n,6,40}] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{7,64,324,1200,3630,9504,22308,48048,96525},30] (* Harvey P. Dale, Mar 13 2016 *)

Formula

G.f.: (7+x)*x^6/(1-x)^9.
From Amiram Eldar, Jan 30 2022: (Start)
Sum_{n>=6} 1/a(n) = 7*Pi^2/6 - 6811/600.
Sum_{n>=6} (-1)^n/a(n) = 7*Pi^2/12 + 2912*log(2)/15 - 252343/1800. (End)

Extensions

Incorrect formula deleted by R. J. Mathar, Feb 13 2016

A027768 a(n) = (n+1)*binomial(n+1,8).

Original entry on oeis.org

8, 81, 450, 1815, 5940, 16731, 42042, 96525, 205920, 413270, 787644, 1436058, 2519400, 4273290, 7034940, 11277222, 17651304, 27039375, 40619150, 59942025, 87026940, 124472205, 175587750, 244550475, 336585600, 458177148, 617310936, 823753700, 1089372240
Offset: 7

Views

Author

Thi Ngoc Dinh (via R. K. Guy)

Keywords

Comments

Number of 10-subsequences of [ 1, n ] with just 1 contiguous pair.
1625*a(n) is the number of permutations of (n+1) symbols that 8-commute with an (n+1)-cycle (see A233440 for definition), where 1625 = A000757(8). - Luis Manuel Rivera Martínez, Feb 07 2014

Crossrefs

Programs

  • Mathematica
    Table[(n+1)Binomial[n+1,8],{n,7,40}] (* Harvey P. Dale, Jul 08 2017 *)
  • PARI
    a(n) = (n+1)*binomial(n+1, 8); \\ Michel Marcus, Jan 31 2014

Formula

G.f.: (8+x)*x^7/(1-x)^10.
From Amiram Eldar, Jan 30 2022: (Start)
Sum_{n>=7} 1/a(n) = 48877/3675 - 4*Pi^2/3.
Sum_{n>=7} (-1)^(n+1)/a(n) = 2*Pi^2/3 + 38656*log(2)/105 - 2884681/11025. (End)

Extensions

Incorrect formula deleted . - R. J. Mathar, Feb 13 2016
Previous Showing 11-12 of 12 results.