cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A003022 Length of shortest (or optimal) Golomb ruler with n marks.

Original entry on oeis.org

1, 3, 6, 11, 17, 25, 34, 44, 55, 72, 85, 106, 127, 151, 177, 199, 216, 246, 283, 333, 356, 372, 425, 480, 492, 553, 585
Offset: 2

Views

Author

Keywords

Comments

a(n) is the least integer such that there is an n-element set of integers between 0 and a(n), the sums of pairs (of not necessarily distinct elements) of which are distinct.
From David W. Wilson, Aug 17 2007: (Start)
An n-mark Golomb ruler has a unique integer distance between any pair of marks and thus measures n(n-1)/2 distinct integer distances.
An optimal n-mark Golomb ruler has the smallest possible length (distance between the two end marks) for an n-mark ruler.
A perfect n-mark Golomb ruler has length exactly n(n-1)/2 and measures each distance from 1 to n(n-1)/2. (End)
Positions where A143824 increases (see also A227590). - N. J. A. Sloane, Apr 08 2016
From Gus Wiseman, May 17 2019: (Start)
Also the smallest m such that there exists a length-n composition of m for which every restriction to a subinterval has a different sum. Representatives of compositions for the first few terms are:
0: ()
1: (1)
3: (2,1)
6: (2,3,1)
11: (3,1,5,2)
17: (4,2,3,7,1)
Representatives of corresponding Golomb rulers are:
{0}
{0,1}
{0,2,3}
{0,2,5,6}
{0,3,4,9,11}
{0,4,6,9,16,17}
(End)

Examples

			a(5)=11 because 0-1-4-9-11 (0-2-7-10-11) resp. 0-3-4-9-11 (0-2-7-8-11) are shortest: there is no b0-b1-b2-b3-b4 with different distances |bi-bj| and max. |bi-bj| < 11.
		

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 315.
  • A. K. Dewdney, Computer Recreations, Scientific Amer. 253 (No. 6, Jun), 1985, pp. 16ff; 254 (No. 3, March), 1986, pp. 20ff.
  • S. W. Golomb, How to number a graph, pp. 23-37 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
  • Richard K. Guy, Unsolved Problems in Number Theory (2nd edition), Springer-Verlag (1994), Section C10.
  • A. Kotzig and P. J. Laufer, Sum triangles of natural numbers having minimum top, Ars. Combin. 21 (1986), 5-13.
  • Miller, J. C. P., Difference bases. Three problems in additive number theory. Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969), pp. 299--322. Academic Press, London,1971. MR0316269 (47 #4817)
  • Rhys Price Jones, Gracelessness, Proc. 10th S.-E. Conf. Combin., Graph Theory and Computing, 1979, pp. 547-552.
  • Ana Salagean, David Gardner and Raphael Phan, Index Tables of Finite Fields and Modular Golomb Rulers, in Sequences and Their Applications - SETA 2012, Lecture Notes in Computer Science. Volume 7280, 2012, pp. 136-147.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A106683 for triangle of marks.
0-1-4-9-11 corresponds to 1-3-5-2 in A039953: 0+1+3+5+2=11
A row or column of array in A234943.
Adding 1 to these terms gives A227590. Cf. A143824.
For first differences see A270813.

Programs

  • Mathematica
    Min@@Total/@#&/@GatherBy[Select[Join@@Permutations/@Join@@Table[IntegerPartitions[i],{i,0,15}],UnsameQ@@ReplaceList[#,{_,s__,_}:>Plus[s]]&],Length] (* Gus Wiseman, May 17 2019 *)
  • Python
    from itertools import combinations, combinations_with_replacement, count
    def a(n):
        for k in count(n-1):
            for c in combinations(range(k), n-1):
                c = c + (k, )
                ss = set()
                for s in combinations_with_replacement(c, 2):
                    if sum(s) in ss: break
                    else: ss.add(sum(s))
                if len(ss) == n*(n+1)//2: return k # Jianing Song, Feb 14 2025, adapted from the python program of A345731

Formula

a(n) >= n(n-1)/2, with strict inequality for n >= 5 (Golomb). - David W. Wilson, Aug 18 2007

Extensions

425 sent by Ed Pegg Jr, Nov 15 2004
a(25), a(26) proved by OGR-25 and OGR-26 projects, added by Max Alekseyev, Sep 29 2010
a(27) proved by OGR-27, added by David Consiglio, Jr., Jun 09 2014
a(28) proved by OGR-28, added by David Consiglio, Jr., Jan 19 2023

A013574 Minimal scope of an (n,2) difference triangle.

Original entry on oeis.org

3, 7, 10, 12, 15, 19, 22, 24, 27, 31, 34, 36, 39, 43, 46, 48, 51, 55, 58, 60, 63, 67, 70, 72, 75, 79, 82, 84, 87, 91, 94, 96, 99, 103, 106, 108, 111, 115, 118, 120, 123, 127, 130, 132, 135, 139, 142, 144, 147, 151, 154, 156, 159, 163, 166, 168, 171, 175, 178, 180, 183, 187, 190
Offset: 1

Views

Author

Keywords

Comments

a(n)*Pi is also the total length of irregular spiral (center points: 1, 2, 5, 3, 4) after n-rotations. - Kival Ngaokrajang, Jan 08 2014

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 315.

Crossrefs

A row or column of array in A234943.
A319279 is an essentially identical sequence.

Programs

  • Maple
    A013574 := proc(n)
        if modp(n,4) in {0,1} then
            3*n ;
        else
            3*n+1 ;
        end if;
    end proc: # R. J. Mathar, Nov 28 2016
  • Mathematica
    LinearRecurrence[{2, -2, 2, -1}, {3, 7, 10, 12}, 63] (* Jean-François Alcover, Nov 24 2017 *)
  • PARI
    Vec(x*(3 + x + 2*x^2) / ((1 - x)^2*(1 + x^2)) + O(x^40)) \\ Colin Barker, Nov 25 2017

Formula

a(n) = 3n if n = {0,1} (mod 4). a(n) = 3n+1 if n = {2,3} (mod 4). [Chee Theor. 2] - R. J. Mathar, Nov 28 2016
G.f.: x*(3+x+2*x^2) / ( (x^2+1)*(x-1)^2 ). - R. J. Mathar, Nov 28 2016
From Colin Barker, Nov 25 2017: (Start)
a(n) = (-1/4 - i/4) * ((-1+i) + (-i)^n - i*i^n - (6-6*i)*n).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>4.
(End)

A234944 Array read by antidiagonals: T(i,j) = number of different optimal difference triangle sets M(i,j).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 12, 2, 2, 1, 8, 9, 1, 4, 1, 21, 12, 4, 2, 5, 1, 720, 174, 6, 3, 2, 1, 1, 4079, 3132, 92, 1, 4, 1, 1, 1, 3040, 71930, 117
Offset: 1

Views

Author

N. J. A. Sloane, Jan 08 2014

Keywords

Comments

This array gives the number of different ways to choose the optimal difference triangle sets M(i,j) described in A234943.

Examples

			Array begins:
j\i| 1,  2,  3,   4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
-----------------------------------------------------------------
1  | 1,   1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,   1,   1 (A000012)
2  | 1,   3,   12,   8,  21, 720, 4079, 3040, 20505, 1669221, 14708525, 10567748,  (A234947)
3  | 1,   2,    9,  12, 174, 3132, 71930,   (A234945)
4  | 2,   1,    4,   6,  92, 117,   (A234946)
5  | 4,   2,    3,   1,
6  | 5,   2,    4,   4,
7  | 1,   1,    1,
8  | 1,   2,
9  | 1,   1,
10 | 2,
11 | 1
12 | 1
13 | 1
14 | 1
15 | 1
The entries match those in A234943.
		

Crossrefs

Rows give A234947, A234945, A234946.
Cf. A234943.

A010896 Minimal scope of a (3,n) difference triangle.

Original entry on oeis.org

3, 10, 19, 32, 49, 72, 100
Offset: 1

Views

Author

Keywords

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 315 (but beware errors).

Crossrefs

A row or column of array in A234943.

Extensions

a(6) corrected from Shearer's tables. - N. J. A. Sloane, Jan 08 2014

A234947 Number of different optimal triangle difference sets M(n,2).

Original entry on oeis.org

1, 3, 12, 8, 21, 720, 4079, 3040, 20505, 1669221, 14708525, 10567748
Offset: 1

Views

Author

N. J. A. Sloane, Jan 08 2014

Keywords

Crossrefs

A row of array in A234944. Cf. A234943.

A010895 Minimal scope of a (2,n) difference triangle.

Original entry on oeis.org

2, 7, 13, 22, 34, 51, 70, 94, 121, 153
Offset: 1

Views

Author

Keywords

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 315.
  • CRC Handbook of Combinatorial Designs, Second Edition, 2007, par. 19.37.

Crossrefs

A row or column of array in A234943.

Extensions

a(10) from Andrey Zabolotskiy, Aug 22 2017

A010897 Minimal scope of a (4,n) difference triangle.

Original entry on oeis.org

4, 12, 24, 41, 64, 94
Offset: 1

Views

Author

Keywords

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 315. (But beware errors!)

Crossrefs

A row or column of array in A234943.

Extensions

Corrected from Shearer's tables. - N. J. A. Sloane, Jan 08 2014

A010898 Minimal scope of a (5,n) difference triangle.

Original entry on oeis.org

5, 15, 30, 51, 79
Offset: 1

Views

Author

Keywords

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 315. (But beware errors!)

Crossrefs

A row or column of array in A234943.

Extensions

Corrected from Shearer's tables. - N. J. A. Sloane, Jan 08 2014

A010899 Minimal scope of a (6,n) difference triangle.

Original entry on oeis.org

6, 19, 36, 60
Offset: 1

Views

Author

Keywords

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 315.

Crossrefs

A row or column of array in A234943.

A013575 Minimal scope of an (n,3) difference triangle.

Original entry on oeis.org

6, 13, 19, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90
Offset: 1

Views

Author

Keywords

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 315.

Crossrefs

A row or column of array in A234943.
Showing 1-10 of 12 results. Next