cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A236482 Primes p with p + 2, prime(p) + 2, prime(prime(p)) + 2 and prime(prime(prime(p))) + 2 all prime.

Original entry on oeis.org

41609, 1119047, 1928621, 2348579, 2371709, 3406727, 4098569, 4204817, 4438997, 5561819, 6161159, 6293297, 8236439, 8736701, 8890667, 8951387, 9231329, 9390077, 10492457, 10619897, 11255729, 11514719, 11769479, 11920661, 12316697
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 26 2014

Keywords

Comments

According to the general conjecture in A236481, this sequence should have infinitely many terms.

Examples

			a(1) = 41609 with 41609, 41609 + 2 = 41611, prime(41609) + 2 = 500909 + 2 = 500911, prime(500909) + 2 = 7382957 + 2 = 7382959 and prime(7382957) + 2 = 130090109 + 2 = 130090111 all prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=p[n]=PrimeQ[n+2]&&PrimeQ[Prime[n]+2]&&PrimeQ[Prime[Prime[n]]+2]&&PrimeQ[Prime[Prime[Prime[n]]]+2]
    n=0;Do[If[p[Prime[m]],n=n+1;Print[n," ",Prime[m]]],{m,1,10^6}]

A236480 a(n) = |{0 < k < n-2: p = 2*phi(k) + phi(n-k)/2 + 1, prime(p) + 2 and prime(prime(p)) + 2 are all prime}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 1, 1, 2, 1, 3, 2, 2, 0, 2, 3, 1, 2, 1, 3, 3, 2, 2, 1, 1, 1, 3, 0, 2, 3, 2, 1, 3, 0, 2, 0, 1, 1, 1, 1, 2, 0, 0, 0, 0, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 26 2014

Keywords

Comments

Conjecture: a(n) > 0 for every n = 640, 641, ....
We have verified this for n up to 75000.
The conjecture implies that there are infinitely many primes p with prime(p) + 2 and prime(prime(p)) + 2 both prime.

Examples

			a(8) = 1 since 2*phi(3) + phi(5)/2 + 1 = 7, prime(7) + 2 = 17 + 2 = 19 and prime(prime(7)) + 2 = prime(17) + 2 = 61 are all prime.
a(667) = 1 since 2*phi(193) + phi(667-193)/2 + 1 = 384 + 78 + 1 = 463, prime(463) + 2 = 3299 + 2 = 3301 and prime(prime(463)) + 2 = prime(3299) + 2 = 30559 are all prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=PrimeQ[n]&&PrimeQ[Prime[n]+2]&&PrimeQ[Prime[Prime[n]]+2]
    f[n_,k_]:=2*EulerPhi[k]+EulerPhi[n-k]/2+1
    a[n_]:=Sum[If[p[f[n,k]],1,0],{k,1,n-3}]
    Table[a[n],{n,1,100}]

A237283 Primes p with prime(prime(p)) + 2 also prime.

Original entry on oeis.org

2, 3, 7, 13, 23, 29, 59, 71, 103, 193, 257, 271, 281, 311, 317, 389, 433, 439, 463, 569, 577, 619, 673, 683, 691, 797, 811, 857, 859, 887, 1031, 1069, 1109, 1129, 1153, 1229, 1307, 1597, 1613, 1867, 1949, 1951, 2069, 2297, 2477, 2551, 2621, 2657, 2699, 2753
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 05 2014

Keywords

Comments

This sequence is interesting because of the conjecture in A237253.
A236481, A236482 and A236484 are subsequences of the sequence.

Examples

			a(1) = 2 since 2 and prime(prime(2)) + 2 = prime(3) + 2 = 7 are both prime.
		

Crossrefs

Programs

  • Mathematica
    n=0;Do[If[PrimeQ[Prime[Prime[Prime[k]]]+2],n=n+1;Print[n," ",Prime[k]]],{k,1,1000}]
    Select[Prime[Range[500]],PrimeQ[Prime[Prime[#]]+2]&] (* Harvey P. Dale, May 30 2018 *)

A259488 Positive integers k with prime(k)+2 and prime(prime(k))+2 both prime.

Original entry on oeis.org

2, 3, 7, 13, 296, 343, 395, 405, 408, 463, 469, 473, 542, 572, 577, 584, 625, 671, 673, 695, 837, 984, 1016, 1030, 1074, 1165, 1224, 1230, 1328, 1410, 1445, 1679, 1825, 1860, 1867, 1949, 2078, 2091, 2095, 2123, 2167, 2476, 2478, 2616, 2753, 2764, 2956, 3011, 3065, 3416, 3621, 3646, 3712, 3720, 3758, 3872, 3926, 4063, 4071, 4079, 4133, 4217, 4312, 4351, 4524, 4745, 4855, 4865, 4882, 4922
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 28 2015

Keywords

Comments

The conjecture in A259487 essentially says that {a(m)/a(n): m,n = 1,2,3,...} coincides with the set of all positive rational numbers. This implies that the current sequence has infinitely many terms.

Examples

			a(1) = 2 since prime(2)+2 = 5 and prime(prime(2))+2 = prime(3)+2 = 7 are both prime, but prime(1)+2 = 4 is composite.
a(2) = 3 since prime(3)+2 = 7 and prime(prime(3))+2 = prime(7)+2 = 19 are both prime.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    n=0;Do[If[PrimeQ[Prime[k]+2]&&PrimeQ[Prime[Prime[k]]+2],n=n+1;Print[n," ",k]],{k,1,5000}]
    Select[Range[5000],AllTrue[{Prime[#]+2,Prime[Prime[#]]+2},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 18 2018 *)
  • PARI
    k=pk=0; forprime(ppk=2,1e6, if(isprime(pk++),k++; if(isprime(pk+2) && isprime(ppk+2), print1(k", ")))) \\ Charles R Greathouse IV, Jun 29 2015

A261533 Primes p such that p+2 is prime with prime(p+2)-prime(p)=6.

Original entry on oeis.org

3, 5, 59, 2789, 5231, 6947, 8087, 11717, 15269, 16229, 17207, 17909, 18059, 18131, 24917, 28751, 35279, 37307, 39227, 39239, 41201, 43787, 45821, 47741, 51869, 53087, 53609, 58439, 64577, 69857, 70919, 75707, 79631, 84869, 92381, 93479, 96179, 102197, 102929, 106187
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 23 2015

Keywords

Comments

The conjecture in A261528 implies that the current sequence has infinitely many terms.
Note that for each n > 2 the difference prime(n+2)-prime(n) is at least 6.

Examples

			a(1) = 3 since 3 and 3+2 = 5 are twin prime, and prime(5)-prime(3) = 11-5 = 6.
a(2) = 5 since 5 and 5+2 = 7 are twin prime, and prime(7)-prime(5) = 17-11 = 6.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    f[n_]:=Prime[n]
    PQ[k_]:=PrimeQ[f[k]+2]&&f[f[k]+2]-f[f[k]]==6
    n=0;Do[If[PQ[k],n=n+1;Print[n," ",f[k]]],{k,1,10119}]
    Select[Partition[Prime[Range[11000]],2,1],#[[2]]-#[[1]]==2&&Prime[#[[1]]+ 2]- Prime[#[[1]]]==6&][[All,1]] (* Harvey P. Dale, Apr 26 2020 *)
  • PARI
    isok(i)=p=prime(i);isprime(p+2)&&prime(p+2)-prime(p)==6;
    first(m)=my(v=vector(m));i=1;for(j=1,m,while(!isok(i),i++);v[j]=prime(i);i++);v; \\ Anders Hellström, Aug 23 2015
Previous Showing 11-15 of 15 results.